Revolutionizing Indian agriculture: the imperative of advanced biofertilizer technologies for sustainability

Glick BR. Plant growth-promoting bacteria: mechanisms and applications. Scientifica. 2012. https://doi.org/10.6064/2012/963401.

Article  PubMed  PubMed Central  Google Scholar 

Sujanya S, Chandra S. Effect of part replacement of chemical fertilizers with organic and bio-organic agents in ground nut, Arachis hypogea. J Algal Biomass Utiliz. 2011;2(4):38–41.

Google Scholar 

Mariyam S, Upadhyay SK, Chakraborty K, Verma KK, Duhan JS, Muneer S, Meena M, Sharma RK, Ghodake G, Seth CS. Nanotechnology, a frontier in agricultural science, a novel approach in abiotic stress management and convergence with new age medicine-a review. Sci Total Environ. 2023;912: 169097.

Article  PubMed  Google Scholar 

Pathak HK, Chauhan PK, Seth CS, Dubey G, Upadhyay SK. Mechanistic and future prospects in rhizospheric engineering for agricultural contaminants removal, soil health restoration, and management of climate change stress. Sci Total Environ. 2024;927: 172116.

Article  CAS  PubMed  Google Scholar 

Abhinav A. Next-generation biofertilizers and novel biostimulants: documentation and validation of mechanism of endophytic plant growth-promoting rhizobacteria in tomato. Arch Microbiol. 2021. https://doi.org/10.1007/s00203-021-02344-0.

Article  Google Scholar 

Savci S. An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev. 2012;3(1):73.

Article  Google Scholar 

Reddy BS. Soil health: Issues and concerns-a review. Int J Ecol Environ Sci. 2013;38:19–37.

Google Scholar 

Macilwain C. Organic: is it the future of farming? Nature. 2004;428(6985):792–4.

Article  CAS  PubMed  Google Scholar 

Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol. 2018;9:1606.

Article  PubMed  PubMed Central  Google Scholar 

Mitter EK, Tosi M, Obregón D, Dunfield KE, Germida JJ. Rethinking crop nutrition in times of modern microbiology: innovative biofertilizer technologies. Front Sustain Food Syst. 2021;5: 606815.

Article  Google Scholar 

Riaz U, Mehdi SM, Iqbal S, Khalid HI, Qadir AA, Anum W, et al. Bio-fertilizers: eco-friendly approach for plant and soil environment. In: Bioremediation and biotechnology: sustainable approaches to pollution degradation. Springer; 2020. p. 189–213.

Chapter  Google Scholar 

Olanrewaju OS, Glick BR, Babalola OO. Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol. 2017;33:1–16.

Article  CAS  Google Scholar 

Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett. 2008;278(1):1–9. https://doi.org/10.1111/j.1574-6968.2007.00918.x.

Article  CAS  PubMed  Google Scholar 

Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P. Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res. 2017;24:3315–35.

Article  CAS  Google Scholar 

Kumar A, Singh S, Gaurav AK, Srivastava S, Verma JP. Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Front Microbiol. 2020;11:1216. https://doi.org/10.3389/fmicb.2020.01216.

Article  PubMed  PubMed Central  Google Scholar 

Narsing Rao MP, Lohmaneeratana K, Bunyoo C, Thamchaipenet A. Actinobacteria-plant interactions in alleviating abiotic stress. Plants. 2022;11(21):2976. https://doi.org/10.3390/plants11212976.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lastochkina O, Aliniaeifard S, Seifikalhor M, Yuldashev R, Pusenkova L, Garipova S. Plant growth-promoting bacteria: biotic strategy to cope with abiotic stresses in wheat. In: Hasanuzzaman M, Nahar K, Hossain M, editors. Wheat production in changing environments. Singapore: Springer; 2019. https://doi.org/10.1007/978-981-13-6883-7_23.

Chapter  Google Scholar 

El Sebai T, Abdallah M. Role of microorganisms in alleviating the abiotic stress conditions affecting plant growth. In: Advances in plant defense mechanisms. IntechOpen; 2022.

Google Scholar 

Mokrani S, Nabti E-H, Cruz C. Current advances in plant growth promoting bacteria alleviating salt stress for sustainable agriculture. Appl Sci. 2020;10(20):7025. https://doi.org/10.3390/app10207025.

Article  CAS  Google Scholar 

Rana A, Saharan B, Joshi M, et al. Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann Microbiol. 2011;61:893–900. https://doi.org/10.1007/s13213-011-0211-z.

Article  CAS  Google Scholar 

Nagrale DT, Chaurasia A, Kumar S, et al. PGPR: the treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol and plant growth promotion in field crops. World J Microbiol Biotechnol. 2023;39:100. https://doi.org/10.1007/s11274-023-03536-0.

Article  CAS  PubMed  Google Scholar 

Correa PA, Nosheen A, Yasmin H, Ansari MJ. Antifungal antibiotics biosynthesized by major PGPR. In: Sayyed RZ, Uarrota VG, editors. Secondary metabolites and volatiles of PGPR in plant-growth promotion. Cham: Springer; 2022. https://doi.org/10.1007/978-3-031-07559-9_1.

Chapter  Google Scholar 

Riaz U, Murtaza G, Anum W, Samreen T, Sarfraz M, Nazir MZ. Plant growth-promoting rhizobacteria (PGPR) as biofertilizers and biopesticides. In: Hakeem KR, Dar GH, Mehmood MA, Bhat RA, editors. Microbiota and biofertilizers. Cham: Springer; 2021. https://doi.org/10.1007/978-3-030-48771-3_11.

Chapter  Google Scholar 

Annapurna K, Kumar A, Kumar LV, Govindasamy V, Bose P, Ramadoss D. PGPR-induced systemic resistance (ISR) in plant disease management. In: Maheshwari D, editor. Bacteria in agrobiology: disease management. Berlin: Springer; 2013. https://doi.org/10.1007/978-3-642-33639-3_15.

Chapter  Google Scholar 

Meena M, Swapnil P, Divyanshu K, Kumar S, Harish, Tripathi YN, et al. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: current perspectives. J Basic Microbiol. 2020;60(10):828–61.

Article  CAS  PubMed  Google Scholar 

Wang H, Liu R, You MP, Barbetti MJ, Chen Y. Pathogen biocontrol using plant growth-promoting bacteria (PGPR): role of bacterial diversity. Microorganisms. 2021;9(9):1988. https://doi.org/10.3390/microorganisms9091988.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamid S, Lone R, Mohamed HI. Production of antibiotics from PGPR and their role in biocontrol of plant diseases. In: Mohamed HI, El-Beltagi HEDS, Abd-Elsalam KA, editors. Plant growth-promoting microbes for sustainable biotic and abiotic stress management. Cham: Springer; 2021. https://doi.org/10.1007/978-3-030-66587-6_16.

Chapter  Google Scholar 

Lebrazi S, Niehaus K, Bednarz H, et al. Screening and optimization of indole-3-acetic acid production and phosphate solubilization by rhizobacterial strains isolated from Acacia cyanophylla root nodules and their effects on its plant growth. J Genet Eng Biotechnol. 2020;18:71. https://doi.org/10.1186/s43141-020-00090-2.

Article  PubMed  PubMed Central  Google Scholar 

Brito LF, López MG, Straube L, Passaglia LM, Wendisch VF. Inorganic phosphate solubilization by rhizosphere bacterium Paenibacillus sonchi: gene expression and physiological functions. Front Microbiol. 2020;11: 588605.

Article  PubMed  PubMed Central  Google Scholar 

Singh TB, Sahai V, Goyal D, et al. Identification, characterization and evaluation of multifaceted traits of plant growth promoting rhizobacteria from soil for sustainable approach to agriculture. Curr Microbiol. 2020;77:3633–42. https://doi.org/10.1007/s00284-020-02165-2.

Article  CAS  PubMed  Google Scholar 

Maheshwari DK, Dheeman S, Agarwal M. Phytohormone-producing PGPR for sustainable agriculture. In: Maheshwari D, editor. Bacterial metabolites in sustainable agroecosystem. Sustainable development and biodiversity, vol. 12. Cham: Springer; 2015. https://doi.org/10.1007/978-3-319-24654-3_7.

Chapter  Google Scholar 

Stefen DLV, Nunes FR, Rodolfo GR, Segatto C, Anastácio TC, Lajus CR. How phytohormones synthesized by PGPR AFFECT PLANT GROWTH? In: Sayyed RZ, Uarrota VG, editors. Secondary metabolites and volatiles of PGPR in plant-growth promotion. Cham: Springer; 2022. https://doi.org/10.1007/978-3-031-07559-9_7.

Chapter  Google Scholar 

Chernin LS. Quorum-sensing signals as mediators of PGPRs’ beneficial traits. In: Maheshwari D, editor. Bacteria in agrobiology: plant nutrient management. Berlin: Springer; 2011. https://doi.org/10.1007/978-3-642-21061-7_9.

Chapter  Google Scholar 

Jung BK, Khan AR, Hong SJ, et al. Quorum sensing activity of the plant growth-promoting rhizobacterium Serratia glossinae GS2 isolated from the sesame (Sesamum indicum L.) rhizosphere. Ann Microbiol. 2017;67:623–32. https://doi.org/10.1007/s13213-017-1291-1.

Article  CAS 

留言 (0)

沒有登入
gif