Comparative genomics reveal unique markers to monitor by routine PCR assay bioinoculant of Sphingobium indicum B90A in hexachlorocyclohexane (HCH) contaminated soils

Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9:90–100. https://doi.org/10.1515/intox-2016-0012

Article  CAS  PubMed  Google Scholar 

Kumar P, Shashwati GS (2021) "Exploring microbes as bioremediation tools for the degradation of pesticides. In: Maulin PS (ed) Advanced oxidation processes for effluent treatment plants. Elsevier, New York, pp 51–67. https://doi.org/10.1016/B978-0-12-821011-6.00003-7

Chapter  Google Scholar 

Raina V, Suar M, Singh A et al (2008) Enhanced biodegradation of hexachlorocyclohexane (HCH) in contaminated soils via inoculation with Sphingobium indicum B90A. Biodegradation 19:27–40. https://doi.org/10.1007/s10532-007-9112-z

Article  CAS  PubMed  Google Scholar 

Qu J, Xu Y, Ai GM et al (2015) Novel Chryseobacterium sp. PYR2 degrades various organochlorine pesticides (OCPs) and achieves enhancing removal and complete degradation of DDT in highly contaminated soil. J Environ Manag 161:350–357. https://doi.org/10.1016/j.jenvman.2015.07.025

Article  CAS  Google Scholar 

Garg N, Lata P, Jit S et al (2016) Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation. Biodegradation 27:179–193. https://doi.org/10.1007/s10532-016-9765-6

Article  CAS  PubMed  Google Scholar 

Sahoo B, Chaudhuri S (2022) Lindane removal in contaminated soil by defined microbial consortia and evaluation of its effectiveness by bioassays and cytotoxicity studies. Int Microbiol 25:365–378. https://doi.org/10.1007/s10123-022-00232-1

Article  CAS  PubMed  Google Scholar 

Goswami M, Chakraborty P, Mukherjee K et al (2018) Bioaugmentation and biostimulation: a potential strategy for environmental remediation. J Microbiol Exp 6:223–231. https://doi.org/10.15406/jmen.2018.06.00219

Article  Google Scholar 

Manfredini A, Malusà E, Costa C et al (2021) Current methods, common practices, and perspectives in tracking and monitoring bioinoculants in soil. Front Microbiol 12:698491. https://doi.org/10.3389/fmicb.2021.698491

Article  PubMed  PubMed Central  Google Scholar 

Hartmann EM, Badalamenti JP, Krajmalnik-Brown R et al (2012) Quantitative PCR for tracking the megaplasmid-borne biodegradation potential of a model sphingomonad. Appl Environ Microbiol 78:4493–4496. https://doi.org/10.1128/AEM.00715-12

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kiragosyan K, van Veelen P, Gupta S et al (2019) Development of quantitative PCR for the detection of Alkalilimnicola ehrlichii, Thioalkalivibrio sulfidiphilus and Thioalkalibacter halophilus in gas biodesulfurization processes. AMB Express 9:99. https://doi.org/10.1186/s13568-019-0826-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bashir S, Fischer A, Nijenhuis I et al (2013) Enantioselective carbon stable isotope fractionation of hexachlorocyclohexane during aerobic biodegradation by Sphingobium spp. Environ Sci Technol 47:11432–11439. https://doi.org/10.1021/es402197s

Article  CAS  PubMed  Google Scholar 

Kohli P, Richnow HH, Lal R (2017) Compound-specific stable isotope analysis: Implications in hexachlorocyclohexane in-vitro and field assessment. Indian J Microbiol 57:11–22. https://doi.org/10.1007/s12088-016-0630-4

Article  CAS  PubMed  Google Scholar 

Spiegelman D, Whissell G, Greer CW (2005) A survey of the methods for the characterization of microbial consortia and communities. Can J Microbiol 51:355–386. https://doi.org/10.1139/w05-003

Article  CAS  PubMed  Google Scholar 

Pandey J, Chauhan A, Jain RK (2009) Integrative approaches for assessing the ecological sustainability of in situ bioremediation. FEMS Microbiol Rev 33:324–375. https://doi.org/10.1111/j.1574-6976.2008.00133.x

Article  CAS  PubMed  Google Scholar 

Widada J, Nojiri H, Omori T (2002) Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation. Appl Microbiol Biotechnol 60:45–59. https://doi.org/10.1007/s00253-002-1072-y

Article  CAS  PubMed  Google Scholar 

Stapleton RD, Ripp S, Jimenez L et al (1998) Nucleic acid analytical approaches in bioremediation: site assessment and characterization. J Microbiol Methods 32:165–178. https://doi.org/10.1016/S0167-7012(98)00021-9

Article  CAS  Google Scholar 

Dadhwal M, Singh A, Prakash O et al (2009) Proposal of biostimulation for hexachlorocyclohexane (HCH)-decontamination and characterization of culturable bacterial community from high-dose point HCH-contaminated soils. J Appl Microbiol 106:381–392. https://doi.org/10.1111/j.1365-2672.2008.03982.x

Article  CAS  PubMed  Google Scholar 

Tripathi V, Edrisi SA, Chaurasia R et al (2019) Restoring HCHs polluted land as one of the priority activities during the UN-International Decade on Ecosystem Restoration (2021–2030): a call for global action. Sci Total Environ 689:1304–1315. https://doi.org/10.1016/j.scitotenv.2019.06.444

Article  CAS  PubMed  Google Scholar 

Kumar M, Chaudhary P, Dwivedi M et al (2005) Enhanced biodegradation of β-and δ-hexachlorocyclohexane in the presence of α-and γ-isomers in contaminated soils. Environ Sci Technol 39:4005–4011. https://doi.org/10.1021/es048497q

Article  CAS  PubMed  Google Scholar 

Phillips TM, Lee H, Trevors JT et al (2006) Full-scale in situ bioremediation of hexachlorocyclohexane-contaminated soil. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 81:289–298. https://doi.org/10.1002/jctb.1390

Article  CAS  Google Scholar 

Böltner D, Godoy P, Muñoz-Rojas J et al (2008) Rhizoremediation of lindane by root-colonizing Sphingomonas. Microb Biotechnol 1:87–93. https://doi.org/10.1111/j.1751-7915.2007.00004.x

Article  PubMed  Google Scholar 

Elcey CD, Kunhi AM (2010) Substantially enhanced degradation of hexachlorocyclohexane isomers by a microbial consortium on acclimation. J Agric Food Chem 58:1046–1054. https://doi.org/10.1021/jf9038259

Article  CAS  PubMed  Google Scholar 

Egorova DO, Buzmakov SA, Nazarova EA et al (2017) Bioremediation of hexachlorocyclohexane-contaminated soil by the new Rhodococcus wratislaviensis strain Ch628. Water Air Soil Pollut 228:1–6. https://doi.org/10.1007/s11270-017-3344-2

Article  CAS  Google Scholar 

Giri K, Rawat AP, Rawat M et al (2014) Biodegradation of hexachlorocyclohexane by two species of bacillus isolated from contaminated soil. Chem Ecol 30:97–109. https://doi.org/10.1080/02757540.2013.844795

Article  CAS  Google Scholar 

Manickam N, Misra R, Mayilraj S (2007) A novel pathway for the biodegradation of γ-hexachlorocyclohexane by a Xanthomonas sp. strain ICH12. J Appl Microbiol 102:1468–1478. https://doi.org/10.1111/j.1365-2672.2006.03209.x

Article  CAS  PubMed  Google Scholar 

Manickam N, Reddy MK, Saini HS et al (2008) Isolation of hexachlorocyclohexane-degrading Sphingomonas sp. by dehalogenase assay and characterization of genes involved in γ-HCH degradation. J Appl Microbiol 104:952–960. https://doi.org/10.1111/j.1365-2672.2007.03610.x

Article  CAS  PubMed  Google Scholar 

Manickam N, Mau M, Schlömann M (2006) Characterization of the novel HCH-degrading strain, Microbacterium sp. ITRC1. Appl Microbiol Biotechnol 69:580–588. https://doi.org/10.1007/s00253-005-0162-z

Article  CAS  PubMed  Google Scholar 

Delcher AL, Harmon D, Kasif S et al (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641. https://doi.org/10.1093/nar/27.23.4636

Article  CAS  PubMed  PubMed Central  Googl

留言 (0)

沒有登入
gif