Targeted inhibition of SUMOylation: treatment of tumors

Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends–an update. Cancer Epidemiol Biomark Prevent. 2016;25(1):16–27.

Article  Google Scholar 

Ferlay J, Ervik M, Lam F, et al. Global cancer observatory: cancer today. Lyon: international agency for research on cancer; 2020.

Suhail Y, Cain MP, Vanaja K, et al. Systems biology of cancer metastasis. Cell Syst. 2019;9(2):109–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geffen Y, Anand S, Akiyama Y, et al. Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation. Cell. 2023;186(18):3945-67.e26.

Article  CAS  PubMed  Google Scholar 

Tikhonov D, Kulikova L, Kopylov AT, et al. Proteomic and molecular dynamic investigations of PTM-induced structural fluctuations in breast and ovarian cancer. Sci Rep. 2021;11(1):19318.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han ZJ, Feng YH, Gu BH, et al. The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol. 2018;52(4):1081–94.

CAS  PubMed  PubMed Central  Google Scholar 

Okura T, Gong L, Kamitani T, et al. Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J Immunol. 1996;157(10):4277–81.

Article  CAS  PubMed  Google Scholar 

Gill G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev. 2004;18(17):2046–59.

Article  CAS  PubMed  Google Scholar 

Wilkinson KA, Henley JM. Mechanisms, regulation and consequences of protein SUMOylation. Biochem J. 2010;428(2):133–45.

Article  CAS  PubMed  Google Scholar 

Qin Y, Li Q, Liang W, et al. TRIM28 SUMOylates and stabilizes NLRP3 to facilitate inflammasome activation. Nat Commun. 2021;12(1):4794.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Psakhye I, Jentsch S. Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell. 2012;151(4):807–20.

Article  CAS  PubMed  Google Scholar 

Enserink JM. Sumo and the cellular stress response. Cell Div. 2015;10:4.

Article  PubMed  PubMed Central  Google Scholar 

Flotho A, Melchior F. Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem. 2013;82:357–85.

Article  CAS  PubMed  Google Scholar 

Wilkinson KA, Konopacki F, Henley JM. Modification and movement: phosphorylation and SUMOylation regulate endocytosis of GluK2-containing kainate receptors. Commun Integr Biol. 2012;5(2):223–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park HJ, Kim WY, Park HC, et al. SUMO and SUMOylation in plants. Mol Cells. 2011;32(4):305–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson ES. Protein modification by SUMO. Annu Rev Biochem. 2004;73:355–82.

Article  CAS  PubMed  Google Scholar 

Melchior F. SUMO—nonclassical ubiquitin. Annu Rev Cell Dev Biol. 2000;16:591–626.

Article  CAS  PubMed  Google Scholar 

Vertegaal ACO. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol. 2022;23(11):715–31.

Article  CAS  PubMed  Google Scholar 

Drag M, Salvesen GS. DeSUMOylating enzymes–SENPs. IUBMB Life. 2008;60(11):734–42.

Article  CAS  PubMed  Google Scholar 

Kroonen JS, Vertegaal ACO. Targeting SUMO signaling to wrestle cancer. Trends Cancer. 2021;7(6):496–510.

Article  CAS  PubMed  Google Scholar 

Nayak A, Müller S. SUMO-specific proteases/isopeptidases: SENPs and beyond. Genome Biol. 2014;15(7):422.

Article  PubMed  PubMed Central  Google Scholar 

Sampson DA, Wang M, Matunis MJ. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J Biol Chem. 2001;276(24):21664–9.

Article  CAS  PubMed  Google Scholar 

Minty A, Dumont X, Kaghad M, Caput D. Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem. 2000;275(46):36316–23.

Article  CAS  PubMed  Google Scholar 

Kerscher O. SUMO junction-what’s your function? New insights through SUMO-interacting motifs. EMBO Rep. 2007;8(6):550–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mukhopadhyay D, Dasso M. Modification in reverse: the SUMO proteases. Trends Biochem Sci. 2007;32(6):286–95.

Article  CAS  PubMed  Google Scholar 

Shen LN, Dong C, Liu H, et al. The structure of SENP1-SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing. Biochem J. 2006;397(2):279–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gong L, Yeh ET. Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J Biol Chem. 2006;281(23):15869–77.

Article  CAS  PubMed  Google Scholar 

Shen LN, Geoffroy MC, Jaffray EG, Hay RT. Characterization of SENP7, a SUMO-2/3-specific isopeptidase. Biochem J. 2009;421(2):223–30.

Article  CAS  PubMed  Google Scholar 

Seeler JS, Dejean A. SUMO and the robustness of cancer. Nat Rev Cancer. 2017;17(3):184–97.

Article  CAS  PubMed  Google Scholar 

Xia QD, Sun JX, Xun Y, et al. SUMOylation pattern predicts prognosis and indicates tumor microenvironment infiltration characterization in bladder cancer. Front Immunol. 2022;13:864156.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Desterro JM, Rodriguez MS, Hay RT. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell. 1998;2(2):233–9.

Article  CAS  PubMed  Google Scholar 

Demel UM, Böger M, Yousefian S, et al. Activated SUMOylation restricts MHC class I antigen presentation to confer immune evasion in cancer. J Clin Invest. 2022;132(9):e152383.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif