Pulmonary Fibrosis Diagnosis and Disease Progression Detected Via Hair Metabolome Analysis

Travis WD et al (2013) An official American thoracic society/European respiratory society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 188(6):733–748

Article  PubMed  PubMed Central  Google Scholar 

Lederer DJ, Martinez FJ (2018) Idiopathic pulmonary fibrosis. N Engl J Med 378(19):1811–1823

Article  CAS  PubMed  Google Scholar 

Raghu G et al (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183(6):788–824

Article  PubMed  PubMed Central  Google Scholar 

Raghu G et al (2014) Idiopathic pulmonary fibrosis in US medicare beneficiaries aged 65 years and older: incidence, prevalence, and survival, 2001–11. Lancet Respir Med 2(7):566–572

Article  PubMed  Google Scholar 

Raghu G et al (2016) Incidence and prevalence of idiopathic pulmonary fibrosis in US adults 18–64 years old. Eur Respir J 48(1):179–186

Article  PubMed  Google Scholar 

Esposito DB et al (2015) idiopathic pulmonary fibrosis in united states automated claims. incidence, prevalence, and algorithm validation. Am J Respir Crit Care Med 192(10):1200–1207

Article  PubMed  Google Scholar 

Hutchinson JP et al (2014) Increasing global mortality from idiopathic pulmonary fibrosis in the twenty-first century. Ann Am Thorac Soc 11(8):1176–1185

Article  PubMed  Google Scholar 

Hutchinson J et al (2015) Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J 46(3):795–806

Article  PubMed  Google Scholar 

Dove EP, Olson AL, Glassberg MK (2019) Trends in idiopathic pulmonary fibrosis-related mortality in the United States: 2000–2017. Am J Respir Crit Care Med 200(7):929–931

Article  PubMed  Google Scholar 

Wells AU (2021) New insights into the treatment of CTD-ILD. Nat Rev Rheumatol 17(2):79–80

Article  PubMed  Google Scholar 

Spagnolo P et al (2021) Early diagnosis of fibrotic interstitial lung disease: challenges and opportunities. Lancet Respir Med 9(9):1065–1076

Article  CAS  PubMed  Google Scholar 

Cosgrove GP et al (2018) Barriers to timely diagnosis of interstitial lung disease in the real world: the INTENSITY survey. BMC Pulm Med 18(1):9

Article  PubMed  PubMed Central  Google Scholar 

Taylor MJ et al (2024) Disease diagnosis and severity classification in pulmonary fibrosis using carbonyl volatile organic compounds in exhaled breath. Respir Med 222:107534

Article  PubMed  Google Scholar 

Rindlisbacher B et al (2018) Exhaled breath condensate as a potential biomarker tool for idiopathic pulmonary fibrosis-a pilot study. J Breath Res 12(1):016003

Article  Google Scholar 

Montesi SB et al (2014) Docosatetraenoyl LPA is elevated in exhaled breath condensate in idiopathic pulmonary fibrosis. Bmc Pulm Med 14:1–7

Article  Google Scholar 

Chow S et al (2012) Exhaled breath condensate (EBC) biomarkers in pulmonary fibrosis. J Breath Res 6(1):016004

Article  PubMed  Google Scholar 

Zhao YD et al (2017) Metabolic heterogeneity of idiopathic pulmonary fibrosis: a metabolomic study. BMJ Open Respir Res 4(1):e000183

Article  PubMed  PubMed Central  Google Scholar 

Kang YP et al (2016) Metabolic profiling regarding pathogenesis of idiopathic pulmonary fibrosis. J Proteome Res 15(5):1717–1724

Article  CAS  PubMed  Google Scholar 

Rindlisbacher B et al (2018) Serum metabolic profiling identified a distinct metabolic signature in patients with idiopathic pulmonary fibrosis - a potential biomarker role for LysoPC. Respir Res 19(1):7

Article  PubMed  PubMed Central  Google Scholar 

Nambiar S et al (2021) Untargeted metabolomics of human plasma reveal lipid markers unique to chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Proteomics Clin Appl 15(2–3):e2000039

Article  PubMed  Google Scholar 

Usman M, Naseer A, Baig Y et al (2019) Forensic toxicological analysis of hair: a review. Egypt J Forensic Sci 9(17):1–12

Google Scholar 

Henderson GL (1993) Mechanisms of drug incorporation into hair. Forensic Sci Int 63(1–3):19–29

Article  CAS  PubMed  Google Scholar 

Pragst F, Balikova MA (2006) State of the art in hair analysis for detection of drug and alcohol abuse. Clin Chim Acta 370(1–2):17–49

Article  CAS  PubMed  Google Scholar 

Chen X et al (2018) Metabolomic biomarkers and novel dietary factors associated with gestational diabetes in China. Metabolomics 14(11):149

Article  CAS  PubMed  Google Scholar 

Delplancke TDJ et al (2018) Analysis of sequential hair segments reflects changes in the metabolome across the trimesters of pregnancy. Sci Rep 8(1):36

Article  PubMed  PubMed Central  Google Scholar 

He X et al (2016) Maternal hair metabolome analysis identifies a potential marker of lipid peroxidation in gestational diabetes mellitus. Acta Diabetol 53(1):119–122

Article  PubMed  Google Scholar 

Jones B et al (2018) Association between maternal exposure to phthalates and lower language ability in offspring derived from hair metabolome analysis. Sci Rep 8(1):6745

Article  PubMed  PubMed Central  Google Scholar 

Sulek K et al (2014) Hair metabolomics: identification of fetal compromise provides proof of concept for biomarker discovery. Theranostics 4(9):953–959

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin N et al (2023) The maternal hair metabolome is capable of discriminating intrahepatic cholestasis of pregnancy from uncomplicated pregnancy. Front Endocrinol (Lausanne) 14:1280833

Article  PubMed  Google Scholar 

Najafova T et al (2023) Segmental hair metabolomics analysis in pregnant women with pregnancy complications. Metabolomics 19(5):45

Article  CAS  PubMed  Google Scholar 

Xie P et al (2016) Metabonomic study of biochemical changes in human hair of heroin abusers by liquid chromatography coupled with ion trap-time of flight mass spectrometry. J Mol Neurosci 58(1):93–101

Article  CAS  PubMed  Google Scholar 

Seo MJ et al (2021) Mass spectrometry-based metabolomics in hair from current and former patients with methamphetamine use disorder. Arch Pharm Res 44(9–10):890–901

Article  CAS  PubMed  Google Scholar 

Cobo-Golpe M et al (2022) Detection of hair metabolome changes in cocaine users using untargeted metabolomics. Toxicologie Analytique et Clinique 23(3):S34

Article  Google Scholar 

Ran R et al (2023) Metabolomic profiling identifies hair as a robust biological sample for identifying women with cervical cancer. Med Oncol 40(2):75

Article  CAS  PubMed  Google Scholar 

Julious SA (2005) Sample size of 12 per group rule of thumb for a pilot study. Pharm Stat 4:287–291

Article 

留言 (0)

沒有登入
gif