Dysregulation of long non-coding RNA gene expression pathways in monocytes of type 2 diabetes patients with cardiovascular disease

Gurha P. Noncoding RNAs in cardiovascular diseases. Curr Opin Cardiol. 2019;34(3):241–5.

Article  PubMed  PubMed Central  Google Scholar 

Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol 2021, 220(2).

Abi Khalil C. Cardiovascular disorders and epigenetics. In: Med Epigenetics 2021: 197–211.

Leung A, Natarajan R. Long noncoding RNAs in Diabetes and Diabetic complications. Antioxid Redox Signal. 2018;29(11):1064–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pasquier J, Hoarau-Vechot J, Fakhro K, Rafii A, Abi Khalil C. Epigenetics and Cardiovascular Disease in Diabetes. Curr Diab Rep. 2015;15(12):108.

Article  PubMed  Google Scholar 

Tanwar VS, Reddy MA, Natarajan R. Emerging role of long non-coding RNAs in Diabetic Vascular complications. Front Endocrinol (Lausanne). 2021;12:665811.

Article  PubMed  Google Scholar 

Zhang Z, Salisbury D, Sallam T. Long noncoding RNAs in atherosclerosis: JACC Review topic of the Week. J Am Coll Cardiol. 2018;72(19):2380–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanter JE, Hsu CC, Bornfeldt KE. Monocytes and macrophages as protagonists in Vascular complications of Diabetes. Front Cardiovasc Med. 2020;7:10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Torres A, Munoz K, Nahuelpan Y, AP RS, Mendoza P, Jara C, Cappelli C, Suarez R, Oyarzun C, Quezada C, San Martin R. Intraglomerular Monocyte/Macrophage infiltration and macrophage-myofibroblast transition during Diabetic Nephropathy is regulated by the A(2B) Adenosine Receptor. Cells 2020, 9(4).

Saadane A, Veenstra AA, Minns MS, Tang J, Du Y, Abubakr Elghazali F, Lessieur EM, Pearlman E, Kern TS. CCR2-positive monocytes contribute to the pathogenesis of early diabetic retinopathy in mice. Diabetologia. 2023;66(3):590–602.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szablewski L, Sulima A. The structural and functional changes of blood cells and molecular components in diabetes mellitus. Biol Chem. 2017;398(4):411–23.

Article  CAS  PubMed  Google Scholar 

Aboyans V, Ricco JB, Bartelink MEL, Bjorck M, Brodmann M, Cohnert T, Collet JP, Czerny M, De Carlo M, Debus S et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J 2018, 39(9):763–816.

Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, Prescott E, Storey RF, Deaton C, Cuisset T, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407–77.

Article  PubMed  Google Scholar 

Young MJ, Breddy JL, Veves A, Boulton AJ. The prediction of diabetic neuropathic foot ulceration using vibration perception thresholds. A prospective study. Diabetes Care. 1994;17(6):557–60.

Article  CAS  PubMed  Google Scholar 

Stevens PE, Levin A, Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group M. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825–30.

Article  PubMed  Google Scholar 

Wong TY, Sun J, Kawasaki R, Ruamviboonsuk P, Gupta N, Lansingh VC, Maia M, Mathenge W, Moreker S, Muqit MMK, et al. Guidelines on Diabetic Eye Care: the International Council of Ophthalmology Recommendations for Screening, Follow-up, Referral, and treatment based on resource settings. Ophthalmology. 2018;125(10):1608–22.

Article  PubMed  Google Scholar 

Pasquier J, Spurgeon M, Bradic M, Thomas B, Robay A, Chidiac O, Dib MJ, Turjoman R, Liberska A, Staudt M, et al. Whole-methylome analysis of circulating monocytes in acute diabetic Charcot foot reveals differentially methylated genes involved in the formation of osteoclasts. Epigenomics. 2019;11(3):281–96.

Article  CAS  PubMed  Google Scholar 

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinf (Oxford England). 2013;29(1):15–21.

CAS  Google Scholar 

Zhang Y, Parmigiani G, Johnson WE. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genom Bioinform. 2020;2(3):lqaa078.

Article  PubMed  PubMed Central  Google Scholar 

Md R, Dj M, Gk S. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinf (Oxford England) 2010, 26(1).

Dieter C, Lemos NE, Correa NRF, Assmann TS, Crispim D. The impact of lncRNAs in Diabetes Mellitus: a systematic review and in Silico analyses. Front Endocrinol (Lausanne). 2021;12:602597.

Article  PubMed  PubMed Central  Google Scholar 

Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pettersen JP, Almaas E. csdR, an R package for differential co-expression analysis. BMC Bioinformatics. 2022;23(1):79.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barthelemy M. Betweenness Centrality. In: Spatial Networks: A Complete Introduction: From Graph Theory and Statistical Physics to Real-World Applications Edited by Barthelemy M. Cham: Springer International Publishing; 2022: 65–108.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reddy MA, Amaram V, Das S, Tanwar VS, Ganguly R, Wang M, Lanting L, Zhang L, Abdollahi M, Chen Z et al. lncRNA DRAIR is downregulated in diabetic monocytes and modulates the inflammatory phenotype via epigenetic mechanisms. JCI Insight 2021, 6(11).

Zhang H, Xue C, Wang Y, Shi J, Zhang X, Li W, Nunez S, Foulkes AS, Lin J, Hinkle CC et al. Deep RNA sequencing uncovers a repertoire of human macrophage long intergenic noncoding RNAs modulated by macrophage activation and Associated with Cardiometabolic diseases. J Am Heart Assoc 2017, 6(11).

Wang X, Chang X, Zhang P, Fan L, Zhou T, Sun K. Aberrant expression of long non-coding RNAs in newly diagnosed type 2 diabetes indicates potential roles in chronic inflammation and insulin resistance. Cell Physiol Biochem. 2017;43(6):2367–78.

Article  CAS  PubMed  Google Scholar 

Voigt A, Nowick K, Almaas E. A composite network of conserved and tissue specific gene interactions reveals possible genetic interactions in glioma. PLoS Comput Biol. 2017;13(9):e1005739.

Article  PubMed  PubMed Central  Google Scholar 

Chowdhury HA, Bhattacharyya DK, Kalita JK. (Differential) Co-expression Analysis of Gene expression: a Survey of Best practices. IEEE/ACM Trans Comput Biol Bioinform. 2020;17(4):1154–73.

CAS  PubMed  Google Scholar 

van Dam S, Vosa U, van der Graaf A, Franke L, de Magalhaes JP. Gene co-expression analysis for functional classification and gene-disease predictions. Brief Bioinform. 2018;19(4):575–92.

PubMed  Google Scholar 

de la Fuente A. From ‘differential expression’ to ‘differential networking’ - identification of dysfunctional regulatory networks in diseases. Trends Genet. 2010;26(7):326–33.

Article  PubMed  Google Scholar 

Freeman LC. A Set of measures of Centrality based on Betweenness. Sociometry. 1977;40(1):35–41.

Article  Google Scholar 

Rezvani K. UBXD proteins: a family of proteins with diverse functions in Cancer. Int J Mol Sci 2016, 17(10).

Cilenti L, Di Gregorio J, Ambivero CT, Andl T, Liao R, Zervos AS. Mitochondrial MUL1 E3 ubiquitin ligase regulates Hypoxia Inducible factor (HIF-1alpha) and metabolic reprogramming by modulating the UBXN7 cofactor protein. Sci Rep. 2020;10(1):1609.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alexandru G, Graumann J, Smith GT, Kolawa NJ, Fang R, Deshaies RJ. UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover. Cell. 2008;134(5):804–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Gregorio J, Cilenti L, Ambivero CT, Andl T, Liao R, Zervos AS. UBXN7 cofactor of CRL3(KEAP1) and CRL2(VHL) ubiquitin ligase complexes mediates reciprocal regulation of NRF2 and HIF-1alpha proteins. Biochim Biophys Acta Mol Cell Res. 2021;1868(4):118963.

Article  PubMed  PubMed Central  Google Scholar 

Lin Z, Lv D, Liao X, Peng R, Liu H, Wu T, Wu K, Sun Y, Zhang Z. CircUBXN7 promotes macrophage infiltration and renal fibrosis associated with the IGF2BP2-dependent SP1 mRNA stability in diabetic kidney disease. Front Immunol. 2023;14:1226962.

Article  CAS 

留言 (0)

沒有登入
gif