Does consensus contour improve robustness and accuracy in 18F-FDG PET radiomic features?

Mohandas A, Marcus C, Kang H, Truong M-T, Subramaniam RM. Fdg pet/ct in the management of nasopharyngeal carcinoma. AJR Am J Roentgenol. 2014;203(2):146–57. https://doi.org/10.2214/AJR.13.12420.

Article  Google Scholar 

Shen G, Xiao W, Han F, Fan W, Lin X-P, Lu L, Zheng L, Yue N, Haffty B, Zhao C, Deng X. Advantage of PET/CT in target delineation of MRI-negative cervical lymph nodes in intensity-modulated radiation therapy planning for nasopharyngeal carcinoma. J Cancer. 2017;8(19):4117–23. https://doi.org/10.7150/jca.21582.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhuang M, García DV, Kramer GM, Frings V, Smit EF, Dierckx R, Hoekstra OS, Boellaard R. Variability and repeatability of quantitative uptake metrics in (18)F-FDG PET/CT of non-small cell lung cancer: Impact of segmentation method, uptake interval, and reconstruction protocol. J Nuclear Med: Off Publication, Soc Nuclear Med. 2019;60(5):600–7. https://doi.org/10.2967/jnumed.118.216028.

Article  CAS  Google Scholar 

Hatt M, Lee JA, Schmidtlein CR, Naqa IE, Caldwell C, De Bernardi E, Lu W, Das S, Geets X, Gregoire V, Jeraj R, MacManus MP, Mawlawi OR, Nestle U, Pugachev AB, Schöder H, Shepherd T, Spezi E, Visvikis D, Zaidi H, Kirov AS. Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group no. 211. Med Phys. 2017;44(6):1–42. https://doi.org/10.1002/mp.12124.

Article  CAS  Google Scholar 

Pfaehler E, Beukinga RJ, de Jong JR, Slart RHJA, Slump CH, Dierckx RAJO, Boellaard R. Repeatability of (18)F-FDG PET radiomic features: a phantom study to explore sensitivity to image reconstruction settings, noise, and delineation method. Med Phys. 2019;46(2):665–78. https://doi.org/10.1002/mp.13322.

Article  PubMed  Google Scholar 

Papanikolaou N, Matos C, Koh DM. How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imag: Off Publication Int Cancer Imag Soc. 2020;20(1):33. https://doi.org/10.1186/s40644-020-00311-4.

Article  Google Scholar 

Yang F, Simpson G, Young L, Ford J, Dogan N, Wang L. Impact of contouring variability on oncological pet radiomics features in the lung. Sci Rep. 2020;10(1):369. https://doi.org/10.1038/s41598-019-57171-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, Bogowicz M, Boldrini L, Buvat I, Cook GJR, Davatzikos C, Depeursinge A, Desseroit M-C, Dinapoli N, Dinh CV, Echegaray S, El Naqa I, Fedorov AY, Gatta R, Gillies RJ, Goh V, Götz M, Guckenberger M, Ha SM, Hatt M, Isensee F, Lambin P, Leger S, Leijenaar RTH, Lenkowicz J, Lippert F, Losnegård A, Maier-Hein KH, Morin O, Müller H, Napel S, Nioche C, Orlhac F, Pati S, Pfaehler EAG, Rahmim A, Rao AUK, Scherer J, Siddique MM, Sijtsema NM, Socarras Fernandez J, Spezi E, Steenbakkers RJHM, Tanadini-Lang S, Thorwarth D, Troost EGC, Upadhaya T, Valentini V, van Dijk LV, van Griethuysen J, van Velden FHP, Whybra P, Richter C, Löck S. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295(2):328–38. https://doi.org/10.1148/radiol.2020191145.

Article  PubMed  Google Scholar 

Pfaehler E, Mesotten L, Zhovannik I, Pieplenbosch S, Thomeer M, Vanhove K, Adriaensens P, Boellaard R. Plausibility and redundancy analysis to select FDG-PET textural features in non-small cell lung cancer. Med Phys. 2021;48(3):1226–38. https://doi.org/10.1002/mp.14684.

Article  PubMed  Google Scholar 

Eertink JJ, Pfaehler EAG, Wiegers SE, Van T, Brug D, Lugtenburg PJ, Hoekstra OS, Zijlstra JM, de Vet HCW, Boellaard R. Quantitative radiomics features in diffuse large b-cell lymphoma: Does segmentation method matter? J Nuclear Med: Off Publication Soc Nuclear Med. 2022;63(3):389–95. https://doi.org/10.2967/jnumed.121.262117.

Article  CAS  Google Scholar 

McGurk RJ, Bowsher J, Lee JA, Das SK. Combining multiple FDG-PET radiotherapy target segmentation methods to reduce the effect of variable performance of individual segmentation methods. Med Phys. 2013;40(4): 042501. https://doi.org/10.1118/1.4793721.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schaefer A, Vermandel M, Baillet C, Dewalle-Vignion AS, Modzelewski R, Vera P, Massoptier L, Parcq C, Gibon D, Fechter T, Nemer U, Gardin I, Nestle U. Impact of consensus contours from multiple pet segmentation methods on the accuracy of functional volume delineation. Eur J Nucl Med Mol Imaging. 2016;43(5):911–24. https://doi.org/10.1007/s00259-015-3239-7.

Article  CAS  PubMed  Google Scholar 

Lv W, Yuan Q, Wang Q, Ma J, Feng Q, Chen W, Rahmim A, Lu L. Radiomics analysis of PET and CT components of PET/CT imaging integrated with clinical parameters: application to prognosis for nasopharyngeal carcinoma. Mol Imag Biol. 2019;21(5):954–64. https://doi.org/10.1007/s11307-018-01304-3.

Article  CAS  Google Scholar 

Liang Z-G, Tan HQ, Zhang F, Rui Tan LK, Lin L, Lenkowicz J, Wang H, Wen Ong EH, Kusumawidjaja G, Phua JH, Gan SA, Sin SY, Ng YY, Tan TW, Soong YL, Fong KW, Park SY, Soo K-C, Wee JT, Zhu X-D, Valentini V, Boldrini L, Sun Y, Chua ML. Comparison of radiomics tools for image analyses and clinical prediction in nasopharyngeal carcinoma. Br J Radiol. 2019;92(1102):20190271. https://doi.org/10.1259/bjr.20190271.

Article  PubMed  PubMed Central  Google Scholar 

Zhuang M, Qiu Z, Lou Y. Does consensus contours improve robustness and accuracy on 18F-FDG PET imaging tumor delineation? EJNMMI Phys. 2023;10(1):18. https://doi.org/10.1186/s40658-023-00538-7.

Article  PubMed  PubMed Central  Google Scholar 

Le Maitre A, Segars WP, Marache S, Reilhac A, Hatt M, Tomei S, Lartizien C, Visvikis D. Incorporating patient-specific variability in the simulation of realistic whole-body 18F-FDG distributions for oncology applications. Proc IEEE. 2009;97(12):2026–38. https://doi.org/10.1109/JPROC.2009.2027925.

Article  Google Scholar 

Thielemans K, Tsoumpas C, Mustafovic S, Beisel T, Aguiar P, Dikaios N, Jacobson MW. Stir: software for tomographic image reconstruction release 2. Phys Med Biol. 2012;57(4):867–83. https://doi.org/10.1088/0031-9155/57/4/867.

Article  PubMed  Google Scholar 

Zhuang M, Dierckx RAJO, Zaidi H. Generic and robust method for automatic segmentation of pet images using an active contour model. Med Phys. 2016;43(8):4483. https://doi.org/10.1118/1.4954844.

Article  PubMed  Google Scholar 

Foster B, Bagci U, Xu Z, Dey B, Luna B, Bishai W, Jain S, Mollura DJ. Segmentation of pet images for computer-aided functional quantification of tuberculosis in small animal models. IEEE Trans Biomed Eng. 2014;61(3):711–24. https://doi.org/10.1109/TBME.2013.2288258.

Article  PubMed  Google Scholar 

Schaefer A, Kremp S, Hellwig D, Rübe C, Kirsch C-M, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging. 2008;35(11):1989–99. https://doi.org/10.1007/s00259-008-0875-1.

Article  PubMed  Google Scholar 

Frings V, van Velden FHP, Velasquez LM, Hayes W, van de Ven PM, Hoekstra OS, Boellaard R. Repeatability of metabolically active tumor volume measurements with FDG PET/CT in advanced gastrointestinal malignancies: a multicenter study. Radiology. 2014;273(2):539–48. https://doi.org/10.1148/radiol.14132807.

Article  PubMed  Google Scholar 

van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin J-C, Pieper S, Aerts HJWL. Computational radiomics system to decode the radiographic phenotype. Can Res. 2017;77(21):104–7. https://doi.org/10.1158/0008-5472.CAN-17-0339.

Article  CAS  Google Scholar 

Granzier RWY, Ibrahim A, Primakov S, Keek SA, Halilaj I, Zwanenburg A, Engelen SME, Lobbes MBI, Lambin P, Woodruff HC, Smidt ML. Test-retest data for the assessment of breast MRI radiomic feature repeatability. J Magn Reson Imag. 2022;56(2):592–604. https://doi.org/10.1002/jmri.28027.

Article  CAS  Google Scholar 

Jiang Y-W, Xu X-J, Wang R, Chen C-M. Radiomics analysis based on lumbar spine CT to detect osteoporosis. Eur Radiol. 2022;32(11):8019–26. https://doi.org/10.1007/s00330-022-08805-4.

Article  PubMed  PubMed Central  Google Scholar 

van Velden FHP, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ, Hoekstra OS, Smit EF, Boellaard R. Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imag Biol. 2016;18(5):788–95. https://doi.org/10.1007/s11307-016-0940-2.

Article  CAS  Google Scholar 

Whybra P, Zwanenburg A, Andrearczyk V, Schaer R, Apte AP, Ayotte A, Baheti B, Bakas S, Bettinelli A, Boellaard R, Boldrini L, Buvat I, Cook GJR, Dietsche F, Dinapoli N, Gabryś HS, Goh V, Guckenberger M, Hatt M, Hosseinzadeh M, Iyer A, Lenkowicz J, Loutfi MAL, Löck S, Marturano F, Morin O, Nioche C, Orlhac F, Pati S, Rahmim A, Rezaeijo SM, Rookyard CG, Salmanpour MR, Schindele A, Shiri I, Spezi E, Tanadini-Lang S, Tixier F, Upadhaya T, Valentini V, van Griethuysen JJM, Yousefirizi F, Zaidi H, Müller H, Vallières M, Depeursinge A. The image biomarker standardization initiative: standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology. 2024;310(2): 231319. https://doi.org/10.1148/radiol.231319.

Article  Google Scholar 

Zwanenburg A, Leger S, Agolli L, Pilz K, Troost EGC, Richter C, Löck S. Assessing robustness of radiomic features by image perturbation. Sci Rep. 2019;9(1):614. https://doi.org/10.1038/s41598-018-36938-4.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif