Mohandas A, Marcus C, Kang H, Truong M-T, Subramaniam RM. Fdg pet/ct in the management of nasopharyngeal carcinoma. AJR Am J Roentgenol. 2014;203(2):146–57. https://doi.org/10.2214/AJR.13.12420.
Shen G, Xiao W, Han F, Fan W, Lin X-P, Lu L, Zheng L, Yue N, Haffty B, Zhao C, Deng X. Advantage of PET/CT in target delineation of MRI-negative cervical lymph nodes in intensity-modulated radiation therapy planning for nasopharyngeal carcinoma. J Cancer. 2017;8(19):4117–23. https://doi.org/10.7150/jca.21582.
Article CAS PubMed PubMed Central Google Scholar
Zhuang M, García DV, Kramer GM, Frings V, Smit EF, Dierckx R, Hoekstra OS, Boellaard R. Variability and repeatability of quantitative uptake metrics in (18)F-FDG PET/CT of non-small cell lung cancer: Impact of segmentation method, uptake interval, and reconstruction protocol. J Nuclear Med: Off Publication, Soc Nuclear Med. 2019;60(5):600–7. https://doi.org/10.2967/jnumed.118.216028.
Hatt M, Lee JA, Schmidtlein CR, Naqa IE, Caldwell C, De Bernardi E, Lu W, Das S, Geets X, Gregoire V, Jeraj R, MacManus MP, Mawlawi OR, Nestle U, Pugachev AB, Schöder H, Shepherd T, Spezi E, Visvikis D, Zaidi H, Kirov AS. Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group no. 211. Med Phys. 2017;44(6):1–42. https://doi.org/10.1002/mp.12124.
Pfaehler E, Beukinga RJ, de Jong JR, Slart RHJA, Slump CH, Dierckx RAJO, Boellaard R. Repeatability of (18)F-FDG PET radiomic features: a phantom study to explore sensitivity to image reconstruction settings, noise, and delineation method. Med Phys. 2019;46(2):665–78. https://doi.org/10.1002/mp.13322.
Papanikolaou N, Matos C, Koh DM. How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imag: Off Publication Int Cancer Imag Soc. 2020;20(1):33. https://doi.org/10.1186/s40644-020-00311-4.
Yang F, Simpson G, Young L, Ford J, Dogan N, Wang L. Impact of contouring variability on oncological pet radiomics features in the lung. Sci Rep. 2020;10(1):369. https://doi.org/10.1038/s41598-019-57171-7.
Article CAS PubMed PubMed Central Google Scholar
Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, Bogowicz M, Boldrini L, Buvat I, Cook GJR, Davatzikos C, Depeursinge A, Desseroit M-C, Dinapoli N, Dinh CV, Echegaray S, El Naqa I, Fedorov AY, Gatta R, Gillies RJ, Goh V, Götz M, Guckenberger M, Ha SM, Hatt M, Isensee F, Lambin P, Leger S, Leijenaar RTH, Lenkowicz J, Lippert F, Losnegård A, Maier-Hein KH, Morin O, Müller H, Napel S, Nioche C, Orlhac F, Pati S, Pfaehler EAG, Rahmim A, Rao AUK, Scherer J, Siddique MM, Sijtsema NM, Socarras Fernandez J, Spezi E, Steenbakkers RJHM, Tanadini-Lang S, Thorwarth D, Troost EGC, Upadhaya T, Valentini V, van Dijk LV, van Griethuysen J, van Velden FHP, Whybra P, Richter C, Löck S. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295(2):328–38. https://doi.org/10.1148/radiol.2020191145.
Pfaehler E, Mesotten L, Zhovannik I, Pieplenbosch S, Thomeer M, Vanhove K, Adriaensens P, Boellaard R. Plausibility and redundancy analysis to select FDG-PET textural features in non-small cell lung cancer. Med Phys. 2021;48(3):1226–38. https://doi.org/10.1002/mp.14684.
Eertink JJ, Pfaehler EAG, Wiegers SE, Van T, Brug D, Lugtenburg PJ, Hoekstra OS, Zijlstra JM, de Vet HCW, Boellaard R. Quantitative radiomics features in diffuse large b-cell lymphoma: Does segmentation method matter? J Nuclear Med: Off Publication Soc Nuclear Med. 2022;63(3):389–95. https://doi.org/10.2967/jnumed.121.262117.
McGurk RJ, Bowsher J, Lee JA, Das SK. Combining multiple FDG-PET radiotherapy target segmentation methods to reduce the effect of variable performance of individual segmentation methods. Med Phys. 2013;40(4): 042501. https://doi.org/10.1118/1.4793721.
Article CAS PubMed PubMed Central Google Scholar
Schaefer A, Vermandel M, Baillet C, Dewalle-Vignion AS, Modzelewski R, Vera P, Massoptier L, Parcq C, Gibon D, Fechter T, Nemer U, Gardin I, Nestle U. Impact of consensus contours from multiple pet segmentation methods on the accuracy of functional volume delineation. Eur J Nucl Med Mol Imaging. 2016;43(5):911–24. https://doi.org/10.1007/s00259-015-3239-7.
Article CAS PubMed Google Scholar
Lv W, Yuan Q, Wang Q, Ma J, Feng Q, Chen W, Rahmim A, Lu L. Radiomics analysis of PET and CT components of PET/CT imaging integrated with clinical parameters: application to prognosis for nasopharyngeal carcinoma. Mol Imag Biol. 2019;21(5):954–64. https://doi.org/10.1007/s11307-018-01304-3.
Liang Z-G, Tan HQ, Zhang F, Rui Tan LK, Lin L, Lenkowicz J, Wang H, Wen Ong EH, Kusumawidjaja G, Phua JH, Gan SA, Sin SY, Ng YY, Tan TW, Soong YL, Fong KW, Park SY, Soo K-C, Wee JT, Zhu X-D, Valentini V, Boldrini L, Sun Y, Chua ML. Comparison of radiomics tools for image analyses and clinical prediction in nasopharyngeal carcinoma. Br J Radiol. 2019;92(1102):20190271. https://doi.org/10.1259/bjr.20190271.
Article PubMed PubMed Central Google Scholar
Zhuang M, Qiu Z, Lou Y. Does consensus contours improve robustness and accuracy on 18F-FDG PET imaging tumor delineation? EJNMMI Phys. 2023;10(1):18. https://doi.org/10.1186/s40658-023-00538-7.
Article PubMed PubMed Central Google Scholar
Le Maitre A, Segars WP, Marache S, Reilhac A, Hatt M, Tomei S, Lartizien C, Visvikis D. Incorporating patient-specific variability in the simulation of realistic whole-body 18F-FDG distributions for oncology applications. Proc IEEE. 2009;97(12):2026–38. https://doi.org/10.1109/JPROC.2009.2027925.
Thielemans K, Tsoumpas C, Mustafovic S, Beisel T, Aguiar P, Dikaios N, Jacobson MW. Stir: software for tomographic image reconstruction release 2. Phys Med Biol. 2012;57(4):867–83. https://doi.org/10.1088/0031-9155/57/4/867.
Zhuang M, Dierckx RAJO, Zaidi H. Generic and robust method for automatic segmentation of pet images using an active contour model. Med Phys. 2016;43(8):4483. https://doi.org/10.1118/1.4954844.
Foster B, Bagci U, Xu Z, Dey B, Luna B, Bishai W, Jain S, Mollura DJ. Segmentation of pet images for computer-aided functional quantification of tuberculosis in small animal models. IEEE Trans Biomed Eng. 2014;61(3):711–24. https://doi.org/10.1109/TBME.2013.2288258.
Schaefer A, Kremp S, Hellwig D, Rübe C, Kirsch C-M, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging. 2008;35(11):1989–99. https://doi.org/10.1007/s00259-008-0875-1.
Frings V, van Velden FHP, Velasquez LM, Hayes W, van de Ven PM, Hoekstra OS, Boellaard R. Repeatability of metabolically active tumor volume measurements with FDG PET/CT in advanced gastrointestinal malignancies: a multicenter study. Radiology. 2014;273(2):539–48. https://doi.org/10.1148/radiol.14132807.
van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin J-C, Pieper S, Aerts HJWL. Computational radiomics system to decode the radiographic phenotype. Can Res. 2017;77(21):104–7. https://doi.org/10.1158/0008-5472.CAN-17-0339.
Granzier RWY, Ibrahim A, Primakov S, Keek SA, Halilaj I, Zwanenburg A, Engelen SME, Lobbes MBI, Lambin P, Woodruff HC, Smidt ML. Test-retest data for the assessment of breast MRI radiomic feature repeatability. J Magn Reson Imag. 2022;56(2):592–604. https://doi.org/10.1002/jmri.28027.
Jiang Y-W, Xu X-J, Wang R, Chen C-M. Radiomics analysis based on lumbar spine CT to detect osteoporosis. Eur Radiol. 2022;32(11):8019–26. https://doi.org/10.1007/s00330-022-08805-4.
Article PubMed PubMed Central Google Scholar
van Velden FHP, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ, Hoekstra OS, Smit EF, Boellaard R. Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imag Biol. 2016;18(5):788–95. https://doi.org/10.1007/s11307-016-0940-2.
Whybra P, Zwanenburg A, Andrearczyk V, Schaer R, Apte AP, Ayotte A, Baheti B, Bakas S, Bettinelli A, Boellaard R, Boldrini L, Buvat I, Cook GJR, Dietsche F, Dinapoli N, Gabryś HS, Goh V, Guckenberger M, Hatt M, Hosseinzadeh M, Iyer A, Lenkowicz J, Loutfi MAL, Löck S, Marturano F, Morin O, Nioche C, Orlhac F, Pati S, Rahmim A, Rezaeijo SM, Rookyard CG, Salmanpour MR, Schindele A, Shiri I, Spezi E, Tanadini-Lang S, Tixier F, Upadhaya T, Valentini V, van Griethuysen JJM, Yousefirizi F, Zaidi H, Müller H, Vallières M, Depeursinge A. The image biomarker standardization initiative: standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology. 2024;310(2): 231319. https://doi.org/10.1148/radiol.231319.
Zwanenburg A, Leger S, Agolli L, Pilz K, Troost EGC, Richter C, Löck S. Assessing robustness of radiomic features by image perturbation. Sci Rep. 2019;9(1):614. https://doi.org/10.1038/s41598-018-36938-4.
留言 (0)