Protective Effect of Aloe vera (L.) on Diabetes-Induced Oxidative Stress Linked Spermiological Co-Morbidity in Human and Rat: An In-Vitro Analysis

Lotti F, Maggi M. Effects of diabetes mellitus on sperm quality and fertility outcomes: clinical evidence. Andrology. 2023;11(2):399–416. https://doi.org/10.1111/andr.13342.

Article  CAS  PubMed  Google Scholar 

He Z, Yin G, Li QQ, Zeng Q, Duan J. Diabetes mellitus causes male reproductive dysfunction: a review of the evidence and mechanisms. In Vivo. 2021;35(5):2503–11. https://doi.org/10.21873/invivo.12531.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rooney KL, Domar AD. The relationship between stress and infertility. Dialogues Clin Neurosci. 2018;20(1):41–7. https://doi.org/10.31887/DCNS.2018.20.1/klrooney.

Article  PubMed  PubMed Central  Google Scholar 

Lourenço SC, Moldão-Martins M, Alves VD. Antioxidants of natural plant origins: from sources to food industry applications. Molecules. 2019;24(22):1–25. https://doi.org/10.3390/molecules24224132.

Article  CAS  Google Scholar 

Debas HT, Laxminarayan R, Straus SE, et al. Complementary and alternative medicine. In: Jamison DT, Breman JG, Measham AR, et al., editors. Disease control priorities in developing countries. Washington (DC): The international bank for reconstruction and development / The world bank; 2011. p. 1281–91.

Google Scholar 

World Health Organization. WHO traditional medicine strategy: 2014–2023. World Health Organization; 2013.

Abarikwu SO, Onuah CL, Singh SK. Plants in the management of male infertility. Andrologia. 2020;52(3):1–22. https://doi.org/10.1111/and.13509.

Article  Google Scholar 

Maan AA, Nazir A, Khan MKI, Ahmad T, Zia R, Murid M, Abrar M. The therapeutic properties and applications of Aloe vera: a review. J Herb Med. 2018;12:1–10. https://doi.org/10.1016/j.hermed.2018.01.002.

Article  Google Scholar 

Das P, Mitra D, Jana K, Ghosh D. In vitro study on spermicidal action of hydro-methanol extract of Tinospora cordifolia (Willd.) stem in rat and human sperm: a comparative analysis. Reprod Sci. 2023;30:3480–94. https://doi.org/10.1007/s43032-023-01327-4.

Article  CAS  PubMed  Google Scholar 

Gopalkrishnan K, Hinduja IN, Anand Kumar TC. In vitro decondensation of nuclear chromatin of human spermatozoa: assessing fertilizing potential. Arch Androl. 1991;27(1):43–50. https://doi.org/10.3109/01485019108987650.

Article  CAS  PubMed  Google Scholar 

Sarkar R, Ghosh P, Tripathy A, Ghosh D. Correction of diabetes-induced testicular dysfunction by a hydro-methanol (60:40) extract of Curcuma amada rhizomes: a dose-dependent study. J Food Biochem. 2019;43(5):1–13. https://doi.org/10.1111/jfbc.12829.

Article  Google Scholar 

Oosterhuis GJ, Mulder AB, Kalsbeek-Batenburg E, Lambalk CB, Schoemaker J, Vermes I. Measuring apoptosis in human spermatozoa: a biological assay for semen quality? Fertil Steril. 2000;74(2):245–50.

Article  CAS  PubMed  Google Scholar 

Rahman MM, Islam MB, Biswas M. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res Notes. 2015;8:1–9. https://doi.org/10.1186/s13104-015-1618-6.

Article  CAS  Google Scholar 

Hossain MA, AL-Raqmi KA, AL-Mijizy ZH, Weli AM, Al-Riyami Q. Study of total phenol, favonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pac J Trop Biomed. 2013;3(9):705–10. https://doi.org/10.1016/S2221-1691(13)60142-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bera TK, Chatterjee K, Ghosh D. Alpha glucosidase inhibitory activity of hydro-methanolic (2: 3) extract of seed of Swietenia mahagoni (L.) Jacq. Pharmacognosy J. 2014;6(1):63–9.

Article  CAS  Google Scholar 

Gauri SS, Mandal SM, Atta S, Dey S, Pati BR. Novel route of tannic acid biotransformation and their effect on major biopolymer synthesis in Azotobacter sp. SSB81. J App Microbiol. 2013;114(1):84–95. https://doi.org/10.1111/jam.12030.

Article  CAS  Google Scholar 

Sokal RR, Rohle FJ. Introduction to analysis of variance. In: Sokal RR, Rohle FJ, editors. Biometry. New York: WH Freeman and Company; 1997. p. 179–206.

Google Scholar 

Mohammed HA, Almahmoud SA, Arfeen M, Srivastava A, El-Readi MZ, Ragab EA, Shehata SM, Mohammed SA, Mostafa EM, El-khawaga HA, Khan RA. Phytochemical profiling, molecular docking, and in vitro anti-hepatocellular carcinoid bioactivity of Suaeda vermiculata extracts. Arab J Chem. 2022;15(7):103950. https://doi.org/10.1016/j.arabjc.2022.103950.

Article  CAS  Google Scholar 

Mahmoudi M, Boughalleb F, Maaloul S, Mabrouk M, Abdellaoui R. Phytochemical screening, antioxidant potential, and LC–ESI–MS profiling of Ephedra alata and Ephedra altissima seeds naturally growing in Tunisia. Appl Biochem Biotechnol. 2023;195:1–13. https://doi.org/10.1007/s12010-023-04370-8.

Article  CAS  Google Scholar 

Mazuecos L, Contreras M, Kasaija PD, Manandhar P, Grąźlewska W, Guisantes-Batan E, Gomez-Alonso S, Deulofeu K, Fernandez-Moratalla I, Rajbhandari RM, Sojka D. Natural Clerodendrum-derived tick repellent: learning from Nepali culture. Exp Appl Acarol. 2023;90:83–98. https://doi.org/10.1007/s10493-023-00804-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang J, Dunshea FR, Suleria HA. Lc-esi-qtof/ms characterization of phenolic compounds from medicinal plants (hops and juniper berries) and their antioxidant activity. Foods. 2019;9(1):1–25. https://doi.org/10.3390/foods9010007.

Article  CAS  Google Scholar 

Hao J, Li Y, Jia Y, Wang Z, Rong R, Bao J, Zhao M, Fu Z, Ge G. Comparative analysis of major flavonoids among parts of Lactuca indica during different growth periods. Molecules. 2021;26(24):1–13. https://doi.org/10.3390/molecules26247445.

Article  CAS  Google Scholar 

Martins AD, Majzoub A, Agawal A. Metabolic syndrome and male fertility. World J Mens Health. 2019;37(2):113–27. https://doi.org/10.5534/wjmh.180055.

Article  PubMed  Google Scholar 

Park YJ, Pang MG. Mitochondrial functionality in male fertility: from spermatogenesis to fertilization. Antioxidants. 2021;10(1):1–24. https://doi.org/10.3390/antiox10010098.

Article  CAS  Google Scholar 

Hiyoshi T, Fujiwara M, Yao Z. Postprandial hyperglycemia and postprandial hypertriglyceridemia in type 2 diabetes. J Biomed Res. 2017;33(1):1–16. https://doi.org/10.7555/JBR.31.20160164.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian Y, Song W, Xu D, Chen X, Li X, Zhao Y. Autophagy induced by ROS aggravates testis oxidative damage in diabetes via breaking the feedforward loop linking p62 and Nrf2. Oxid Med Cell Longev. 2020;2020:7156579. https://doi.org/10.1155/2020/7156579.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghafarizadeh AA, Malmir M, Naderi Noreini S, Faraji T, Ebrahimi Z. The effect of vitamin E on sperm motility and viability in asthenoteratozoospermic men: in vitro study. Andrologia. 2020;53(1):1–6. https://doi.org/10.1111/and.13891.

Article  CAS  Google Scholar 

Tourmente M, Villar-Moya P, Rial E, Roldan ER. Differences in ATP generation via glycolysis and oxidative phosphorylation and relationships with sperm motility in mouse species. J Biol Chem. 2015;290(33):20613–26. https://doi.org/10.1074/jbc.M115.664813.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Higuchi Y. Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochem Pharmacol. 2003;66(8):1527–35. https://doi.org/10.1016/s0006-2952(03)00508-2.

Article  CAS  PubMed  Google Scholar 

Muratori M, Marchiani S, Tamburrino L, Baldi E. Sperm DNA fragmentation: mechanisms of origin. Adv Exp Med Biol. 2019;1166:75–85. https://doi.org/10.1007/978-3-030-21664-1_5.

Article  CAS  PubMed  Google Scholar 

Chianese R, Pierantoni R. Mitochondrial reactive oxygen species (ROS) production alters sperm quality. Antioxidants. 2021;10(1):1–19. https://doi.org/10.3390/antiox10010092.

Article  CAS  Google Scholar 

Guthrie HD, Welch GR. Effects of reactive oxygen species on sperm function. Theriogenology. 2012;78(8):1700–8. https://doi.org/10.1016/j.theriogenology.2012.05.002.

Article  CAS 

留言 (0)

沒有登入
gif