Relationship of lncRNA FTX and miR-186-5p levels with diabetic peripheral neuropathy in type 2 diabetes and its bioinformatics analysis

Iqbal Z, Azmi S, Yadav R et al (2018) Diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy. Clin Ther 40:828–849

Article  PubMed  Google Scholar 

Selvarajah D, Kar D, Khunti K et al (2019) Diabetic peripheral neuropathy: advances in diagnosis and strategies for screening and early intervention. Lancet Diabetes Endocrinol 7:938–948

Article  PubMed  Google Scholar 

Su M, Yu T, Yu Y et al (2022) hsa-miR-607, lncRNA TUG1 and hsa_circ_0071106 can be combined as biomarkers in type 2 diabetes mellitus. Exp Biol Med (Maywood) 247:1609–1618

Article  CAS  PubMed  Google Scholar 

Chureau C, Chantalat S, Romito A et al (2011) Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum Mol Genet 20:705–718

Article  CAS  PubMed  Google Scholar 

Sheykhi-Sabzehpoush M, Ghasemian M, Khojasteh Pour F et al (2023) Emerging roles of long non-coding RNA FTX in human disorders. Clin Transl Oncol 25:2812–2831

Article  CAS  PubMed  Google Scholar 

Shen Y, Yang G, Zhuo S et al (2021) lncRNA FTX promotes asthma progression by sponging miR-590–5p and upregulating JAK2. Am J Transl Res 13:8833–8846

CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Fan X, Yang H (2020) Long noncoding RNA FTX ameliorates hydrogen peroxide-induced cardiomyocyte injury by regulating the miR-150/KLF13 axis. Open Life Sci 15:1000–1012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang W, Zhang B, Sun J et al (2023) LncRNA FTX promotes the tumorigenesis of lung adenocarcinoma by targeting miR-300. Panminerva Med 65:116–117

Article  PubMed  Google Scholar 

LncRNA FTX (2023) Promotes proliferation and invasion of gastric cancer via miR-144/ZFX axis [Retraction]. Onco Targets Ther 16:1013–1014

Article  Google Scholar 

Huang L, Xiong S, Liu H et al (2023) Bioinformatics analysis of the inflammation-associated lncRNA-mRNA coexpression network in type 2 diabetes. J Renin Angiotensin Aldosterone Syst 2023:6072438

Article  PubMed  PubMed Central  Google Scholar 

Wang W, Hu Y, Zhang Y (2022) FTX attenuates cerebral ischemia-reperfusion injury by inhibiting apoptosis and oxidative stress via miR-186–5p/MDM4 pathway. Neurotox Res 40:542–552

Article  PubMed  Google Scholar 

Ding J, Li H, Liu W et al (2022) miR-186-5p dysregulation in serum exosomes from patients with AMI aggravates atherosclerosis via targeting LOX-1. Int J Nanomedicine 17:6301–6316

Article  PubMed  PubMed Central  Google Scholar 

Xu X, Qu S, Zhang C et al (2023) CD8 T Cell-derived exosomal miR-186-5p elicits renal inflammation via activating tubular TLR7/8 signal axis. Adv Sci (Weinh) 10:e2301492

Article  PubMed  Google Scholar 

Jiang J, Mo H, Liu C et al (2018) Inhibition of miR-186-5p contributes to high glucose-induced injury in AC16 cardiomyocytes. Exp Ther Med 15:627–632

CAS  PubMed  Google Scholar 

ElSayed NA, Aleppo G, Aroda VR et al (2023) 2 Classification and diagnosis of diabetes: standards of care in diabetes-2023. Diabetes Care 46:S19-s40

Article  CAS  PubMed  Google Scholar 

Beutler E, Duron O, Kelly BM (1936) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

Google Scholar 

Wu M, Feng Y, Shi X (2020) Advances with long non-coding RNAs in diabetic peripheral neuropathY. Diabetes Metab Syndr Obes 13:1429–1434

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Q, He Y, Wang X et al (2021) LncRNA PTGS2 regulates islet β-cell function through the miR-146a-5p/RBP4 axis and its diagnostic value in type 2 diabetes mellitus. Am J Transl Res 13:11316–11328

CAS  PubMed  PubMed Central  Google Scholar 

Yu W, Zhao GQ, Cao RJ et al (2017) LncRNA NONRATT021972 was associated with neuropathic pain scoring in patients with type 2 diabetes. Behav Neurol 2017:2941297

Chen L, Gong HY, Xu L (2018) PVT1 protects diabetic peripheral neuropathy via PI3K/AKT pathway. Eur Rev Med Pharmacol Sci 22:6905–6911

CAS  PubMed  Google Scholar 

Chen J, Li C, Liu W et al (2019) miRNA-155 silencing reduces sciatic nerve injury in diabetic peripheral neuropathy. J Mol Endocrinol 63:227–238

Article  CAS  PubMed  Google Scholar 

Pang L, Lian X, Liu H et al (2020) Understanding diabetic neuropathy: focus on oxidative stress. Oxid Med Cell Longev 2020:9524635

Article  PubMed  PubMed Central  Google Scholar 

Vincent AM, Russell JW, Low P, Feldman EL (2004) Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 25:612–628

Article  CAS  PubMed  Google Scholar 

Decroli E, Manaf A, Syahbuddin S et al (2019) The correlation between malondialdehyde and nerve growth factor serum level with diabetic peripheral neuropathy score. Open Access Maced J Med Sci 7:103–106

Article  PubMed  PubMed Central  Google Scholar 

Mendez MM, Folgado J, Tormo C et al (2015) Altered glutathione system is associated with the presence of distal symmetric peripheral polyneuropathy in type 2 diabetic subjects. J Diabetes Complications 29:923–927

Article  PubMed  Google Scholar 

Min D, Kim H, Park L et al (2012) Amelioration of diabetic neuropathy by TAT-mediated enhanced delivery of metallothionein and SOD. Endocrinology 153:81–91

Article  CAS  PubMed  Google Scholar 

Wu Y, Xu D, Zhu X et al (2017) MiR-106a associated with diabetic peripheral neuropathy through the regulation of 12/15-LOX-mediated oxidative/nitrative stress. Curr Neurovasc Res 14:117–124

Article  CAS  PubMed  Google Scholar 

Cho YN, Lee KO, Jeong J et al (2014) The role of insulin resistance in diabetic neuropathy in Koreans with type 2 diabetes mellitus: a 6-year follow-up study. Yonsei Med J 55:700–708

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lian X, Qi J, Yuan M et al (2023) Study on risk factors of diabetic peripheral neuropathy and establishment of a prediction model by machine learning. BMC Med Inform Decis Mak 23:146

Article  PubMed  PubMed Central  Google Scholar 

Dewanjee S, Das S, Das AK et al (2018) Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 833:472–523

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif