Tumor-associated macrophages restrict CD8+ T cell function through collagen deposition and metabolic reprogramming of the breast cancer microenvironment

Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

Article  CAS  PubMed  Google Scholar 

Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bagaev, A. et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell 39, 845–865 (2021).

Article  CAS  PubMed  Google Scholar 

Sun, X. et al. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion. Nature 599, 673–678 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nicolas-Boluda, A. et al. Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. eLife 10, e58688 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Acerbi, I. et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. (Camb.) 7, 1120–1134 (2015).

Article  CAS  PubMed  Google Scholar 

Maller, O. et al. Tumour-associated macrophages drive stromal cell-dependent collagen crosslinking and stiffening to promote breast cancer aggression. Nat. Mater. 20, 548–559 (2021).

Article  CAS  PubMed  Google Scholar 

Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

Article  CAS  PubMed  Google Scholar 

Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chakravarthy, A., Khan, L., Bensler, N. P., Bose, P. & De Carvalho, D. D. TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat. Commun. 9, 4692 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buck, M. D., Sowell, R. T., Kaech, S. M. & Pearce, E. L. Metabolic instruction of immunity. Cell 169, 570–586 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geiger, R. et al. l-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Canale, F. P. et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 598, 662–666 (2021).

Article  CAS  PubMed  Google Scholar 

Ma, E. H. et al. Metabolic profiling using stable isotope tracing reveals distinct patterns of glucose utilization by physiologically activated CD8+ T cells. Immunity 51, 856–870 (2019).

Article  CAS  PubMed  Google Scholar 

Rodriguez, P. C. et al. l-Arginine consumption by macrophages modulates the expression of CD3ζ chain in T lymphocytes. J. Immunol. 171, 1232–1239 (2003).

Article  CAS  PubMed  Google Scholar 

Reinfeld, B. I. et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature 593, 282–288 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grzywa, T. M. et al. Myeloid cell-derived arginase in cancer immune response. Front. Immunol. 11, 938 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei, Z., Oh, J., Flavell, R. A. & Crawford, J. M. LACC1 bridges NOS2 and polyamine metabolism in inflammatory macrophages. Nature https://doi.org/10.1038/s41586-022-05111-3 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Menjivar, R. E. et al. Arginase 1 is a key driver of immune suppression in pancreatic cancer. eLife https://doi.org/10.7554/eLife.80721 (2023).

Li, S. et al. Metabolism drives macrophage heterogeneity in the tumor microenvironment. Cell Rep. 39, 110609 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mouw, J. K. et al. Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nat. Med. 20, 360–367 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638–652 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Afik, R. et al. Tumor macrophages are pivotal constructors of tumor collagenous matrix. J. Exp. Med. 213, 2315–2331 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schnoor, M. et al. Production of type VI collagen by human macrophages: a new dimension in macrophage functional heterogeneity. J. Immunol. 180, 5707–5719 (2008).

Article  CAS  PubMed  Google Scholar 

Karsdal, M. A. (ed.) Biochemistry of Collagens, Laminins and Elastin: Structure Function and Biomarkers https://doi.org/10.1016/C2015-0-05547-2 (Elsevier, 2016).

Combes, A. J. et al. Discovering dominant tumor immune archetypes in a pan-cancer census. Cell 185, 184–203 (2022).

Article  CAS  PubMed  Google Scholar 

Yu, X. et al. The cytokine TGF-β promotes the development and homeostasis of alveolar macrophages. Immunity 47, 903–912 (2017).

Article  CAS  PubMed  Google Scholar 

Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

Article  CAS  PubMed  Google Scholar 

Peranzoni, E. et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc. Natl Acad. Sci. USA 115, E4041–E4050 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sinha, P., Clements, V. K. & Ostrand-Rosenberg, S. Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J. Immunol. 174, 636–645 (2005).

Article  CAS  PubMed  Google Scholar 

Leone, R. D. & Powell, J. D. Metabolism of immune cells in cancer. Nat. Rev. Cancer 20, 516–531 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lim, A. R., Rathmell, W. K. & Rathmell, J. C. The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy. eLife 9, e55185 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Bantug, G. R., Galluzzi, L., Kroemer, G. & Hess, C. The spectrum of T cell metabolism in health and disease. Nat. Rev. Immunol. 18, 19–34 (2018).

Article  CAS  PubMed  Google Scholar 

Rossiter, N. J. et al. CRISPR screens in physiologic medium reveal conditionally essential genes in human cells. Cell Metab. 33, 1248–1263 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif