Targeting Biometals in Alzheimer’s Disease with Metal Chelating Agents Including Coumarin Derivatives

Alzheimer’s Association. 2018 Alzheimer’s disease facts and figures. Alzheimers Dement. 2018. https://doi.org/10.1016/j.jalz.2018.02.001.

Savelieff MG, Lee S, Liu Y, Lim MH. Untangling amyloid-beta, Tau, and metals in Alzheimer’s disease. Acs Chem Biol. 2013. https://doi.org/10.1021/cb400080f.

Article  PubMed  Google Scholar 

Kawada H, Blessing K, Kiyota T, Woolman T, Winchester L, Kador PF. Effects of multifunctional antioxidants on mitochondrial dysfunction and amyloid-β metal dyshomeostasis. J Alzheimers Dis. 2015. https://doi.org/10.3233/JAD-132471.

Article  PubMed  Google Scholar 

Santos MA, Chand K, Chaves S. Recent progress in multifunctional metal chelators as potential drugs for Alzheimer’s disease. Coord Chem Rev. 2016. https://doi.org/10.1016/j.ccr.2016.04.013.

Article  Google Scholar 

Chaves S, Várnagy K, Santos MA. Recent multi-target approaches on the development of anti-Alzheimer’s agents integrating metal chelation activity. Curr Med Chem. 2021. https://doi.org/10.2174/0929867328666210218183032.

Article  PubMed  Google Scholar 

Stefanachi A, Leonetti F, Pisani L, Catto M, Carotti A. Coumarin: a natural, privileged and versatile scaffold for bioactive compounds. Molecules. 2018. https://doi.org/10.3390/molecules23020250.

Article  PubMed  PubMed Central  Google Scholar 

White AR, Kanninen K, Crouch P. Editorial: Metals and neurodegeneration: restoring the balance. Front Aging Neurosci. 2015. https://doi.org/10.3389/fnagi.2015.00127.

Article  PubMed  PubMed Central  Google Scholar 

Duce JA, Bush AI. Biological metals and Alzheimer’s disease: implications for therapeutics and diagnostics. Prog Neurobiol. 2010. https://doi.org/10.1016/j.pneurobio.2010.04.003.

Article  PubMed  Google Scholar 

Tiffany-Castiglioni E, Hong S, Qian Y. Copper handling by astrocytes: insights into neurodegenerative diseases. Int J Dev Neurosci. 2011. https://doi.org/10.1016/j.ijdevneu.2011.09.004.

Article  PubMed  Google Scholar 

Leko MB, Horvat LL, Popovački EŠ, Zubčić K, Hof PR, Šimić G. Metals in Alzheimer’s disease. Biomedicines. 2023. https://doi.org/10.3390/biomedicines11041161.

Article  Google Scholar 

Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R, Li QX, Tammer A, Carrington D, Mavros C, Volitakis I, Xilinas M, Ames D, Davis S, Beyreuther K, Tanzi RE, Masters CL. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol. 2003. https://doi.org/10.1001/archneur.60.12.1685.

Article  PubMed  Google Scholar 

Ejaz HW, Wang W, Lang M. Copper toxicity links to pathogenesis of Alzheimer’s disease and therapeutics approaches. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21207660.

Article  PubMed  PubMed Central  Google Scholar 

Crouch PJ, Savva MS, Hung LW, Donnelly PS, Mot AI, Parker SJ, Greenough MA, Volitakis I, Adlard PA, Cherny RA. The Alzheimer’s therapeutic PBT2 promotes amyloid-β degradation and GSK3 phosphorylation via a metal chaperone activity. J Neurochem. 2011. https://doi.org/10.1111/j.1471-4159.2011.07402.x.

Article  PubMed  Google Scholar 

Summers KL, Roseman GP, Sopasis GJ, Millhauser GL, Harris HH, Pickering IJ, George GN. Copper(II) Binding to PBT2 differs from that of other 8-hydroxyquinoline chelators: implications for the treatment of neurodegenerative protein misfolding diseases. Inorg Chem. 2020. https://doi.org/10.1021/acs.inorgchem.0c02754.

Article  PubMed  PubMed Central  Google Scholar 

Drew SC. Chelator PBT2 forms a ternary Cu2+ complex with β-amyloid that has high stability but low specificity. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24119267.

Article  PubMed  PubMed Central  Google Scholar 

Prasanthi JRP, Schrag M, Dasari B, Mararha G, Dickson A, Kirsch WM, Ghribi O. Deferiprone reduces amyloid-β and tau phosphorylation levels but not reactive oxygen species generation in hippocampus of rabbits fed a cholesterol-enriched diet. J Alzheimers Dis. 2012. https://doi.org/10.3233/JAD-2012-111346.

Article  PubMed  PubMed Central  Google Scholar 

Wang CY, Xie JW, Xu Y, Wang T, Cai JH, Wang X, Zhao BL, An L, Wang ZY. Trientine reduces BACE-1 activity and mitigates amyloidosis via the AGE/RAGE/NF-κB pathway in a transgenic mouse model of Alzheimer’s disease. Antioxid Redox Signal. 2013. https://doi.org/10.1089/ars.2012.5158.

Article  PubMed  PubMed Central  Google Scholar 

Li LB, Fan YG, Wu WX, Bai CY, Jia MY, Hu JP, Gao HL, Wang T, Zhong ML, Huang XS, Guo C. Novel melatonin-trientine conjugate as potential therapeutic agents for Alzheimer’s disease. Bioorg Chem. 2022. https://doi.org/10.1016/j.bioorg.2022.106100.

Article  PubMed  PubMed Central  Google Scholar 

Squitti R, Rossini PM, Cassetta E, Moffa F, Pasqualetti P, Cortesi M, Colloca A, Rossi L, Finazzi-Agro’ A. d-Penicillamine reduces serum oxidative stress in Alzheimer’s disease patients. Eur J Clin Investig. 2002. https://doi.org/10.1046/j.1365-2362.2002.00933.x.

Article  Google Scholar 

Rogers JT, Randall JD, Cahill CM, Eder PS, Huang X, Gunshin H, Leiter L, McPhee J, Sarang SS, Utsuki T, Greig NH, Lahiri DK, Tanzi RE, Bush AI, Giordano T, Gullans SR. An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem. 2002. https://doi.org/10.1074/jbc.M207435200.

Article  PubMed  Google Scholar 

Lee JY, Friedman JE, Angel I, Kozak A, Koh JY. The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human beta-amyloid precursor protein transgenic mice. Neurobiol Aging. 2004. https://doi.org/10.1016/j.neurobiolaging.2004.01.005.

Article  PubMed  Google Scholar 

Lanza V, Milardi D, Di Natale G, Pappalardo G. Repurposing copper(II)-chelating drugs for the treatment of neurodegenerative diseases. Curr Med Chem. 2018. https://doi.org/10.2174/0929867324666170518094404.

Article  PubMed  Google Scholar 

Yang GJ, Liu H, Ma DL, Leung CH. Rebalancing metal dyshomeostasis for Alzheimer’s disease therapy. J Biol Inorg Chem. 2019. https://doi.org/10.1007/s00775-019-01712-y.

Article  PubMed  PubMed Central  Google Scholar 

Piemontese L, Vitucci G, Catto M, Laghezza A, Perna FM, Rullo M, Loiodice F, Capriati V, Solfrizzo M. Natural scaffolds with multi-target activity for the potential treatment of Alzheimer’s disease. Molecules. 2018. https://doi.org/10.3390/molecules23092182.

Article  PubMed  PubMed Central  Google Scholar 

Poliseno V, Chaves S, Brunetti L, Loiodice F, Carrieri A, Laghezza A, Tortorella P, Magalhães JD, Cardoso SM, Santos MA, Piemontese L. Derivatives of tenuazonic acid as potential new multi-target anti-Alzheimer’s disease agents. Biomolecules. 2021. https://doi.org/10.3390/biom11010111.

Article  PubMed  PubMed Central  Google Scholar 

Kilic B, Bardakkaya M, Sagkan RI, Aksakal F, Shakila S, Dogruer DS. New thiourea and benzamide derivatives of 2-aminothiazole as multi-target agents against Alzheimer’s disease: design, synthesis, and biological evaluation. Bioorg Chem. 2023. https://doi.org/10.1016/j.bioorg.2022.106322.

Article  PubMed  Google Scholar 

Wojtunik-Kulesza K, Oniszczuk A, Waksmundzka-Hajnos M. An attempt to elucidate the role of iron and zinc ions in development of Alzheimer’s and Parkinson’s diseases. Biomed Pharmacother. 2019. https://doi.org/10.1016/j.biopha.2018.12.140.

Article  PubMed  Google Scholar 

Cabantchik ZI, Breuer W, Zanninelli G, Cianciulli P. LPI-labile plasma iron in iron overload. Best Pract Res Clin Haematol. 2005. https://doi.org/10.1016/j.beha.2004.10.003.

Article  PubMed  Google Scholar 

Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J. Body iron metabolism and pathophysiology of iron overload. Int J Hematol. 2008. https://doi.org/10.1007/s12185-008-0120-5.

Article  PubMed  PubMed Central  Google Scholar 

Kakhlon O, Cabantchik ZI. The labile iron pool: characterization, measurement, and participation in cellular processes. Free Radic Biol Med. 2002. https://doi.org/10.1016/s0891-5849(02)01006-7.

Article  PubMed  Google Scholar 

Nick H. Iron chelation, quo vadis? Curr Opin Chem Biol. 2007. https://doi.org/10.1016/j.cbpa.2007.04.025.

Article  PubMed  Google Scholar 

Hare D, Ayton S, Bush A, Lei P. A delicate balance: iron metabolism and diseases of the brain. Front Aging Neurosci. 2013. https://doi.org/10.3389/fnagi.2013.00034.

Article  PubMed  PubMed Central  Google Scholar 

Piga A, Galanello R, Forni GL, Cappellini MD, Origa R, Zappu A. Randomized phase II trial of deferasirox (Exjade, ICL670), a once-daily, orally-administered iron chelator, in comparison to deferoxamine in thalassemia patients with transfusional iron overload. Haematologica. 2006;91:873–80.

CAS  PubMed  Google Scholar 

Gal S, Zheng H, Fridkin M, Youdim MBH. Restoration of nigrostriatal dopamine neurons in post-MPTP treatment by the novel multifunctional brain-permeable iron chelator-monoamine oxidase inhibitor drug, M30. Neurotox Res. 2010. https://doi.org/10.1007/s12640-009-9070-9.

Article  PubMed  Google Scholar 

Avramovich-Tirosh Y, Bar-Am O, Amit T, Youdim MBH, Weinreb O. Up-regulation of hypoxia-inducible factor (HIF)-1α and HIF-target genes in cortical neurons by the novel multifunctional iron chelator anti-Alzheimer drug, M30. Curr Alzheimer Res. 2010. https://doi.org/10.2174/156720510791162403.

Article  PubMed  Google Scholar 

Zhu W, Xie W, Pan T, Xu P, Fridkin M, Zheng H, Jankovic J, Youdim MBH, Le W. Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelators. FASEB J. 2007. https://doi.org/10.1096/fj.07-8386com.

Article 

留言 (0)

沒有登入
gif