Bartels H, Moll W, Metcalfe J. Physiology of gas exchange in the human placenta. Am J Obstet Gynecol. 1962;84:1714–30.
Article CAS PubMed Google Scholar
Capellini I. The evolutionary significance of placental interdigitation in mammalian reproduction: contributions from comparative studies. Placenta. 2012;33:763–8.
Article CAS PubMed Google Scholar
Bosseray N, Plommet M. Serum- and cell-mediated immune protection of mouse placenta and fetus against a Brucella abortus challenge: expression of barrier effect of placenta. Placenta. 1988;9:65–79.
Article CAS PubMed Google Scholar
Yang H, Wu Z. Genome editing of pigs for agriculture and biomedicine. Front Genet. 2018;9:360.
Article PubMed PubMed Central Google Scholar
Nagashima H, Matsunari H, Nakano K, Watanabe M, Umeyama K, Nagaya M. Advancing pig cloning technologies towards application in regenerative medicine. Reprod Domest Anim. 2012;47(Suppl 4):120–6.
Jakobsen JE, Johansen MG, Schmidt M, Liu Y, Li R, Callesen H, et al. Expression of the Alzheimer’s disease mutations AβPP695sw and PSEN1M146I in double-transgenic Göttingen minipigs. J Alzheimers Dis. 2016;53:1617–30.
Article CAS PubMed Google Scholar
Al-Mashhadi RH, Sørensen CB, Kragh PM, Christoffersen C, Mortensen MB, Tolbod LP, et al. Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med. 2013;5:166ra1.
Zhu XX, Zhong YZ, Ge YW, Lu KH, Lu SS. CRISPR/Cas9-mediated generation of Guangxi Bama minipigs harboring three mutations in α-synuclein causing Parkinson’s disease. Sci Rep. 2018;8:12420.
Article PubMed PubMed Central Google Scholar
Yuan L, Wang A, Yao C, Huang Y, Duan F, Lv Q, et al. Aberrant expression of Xist in aborted porcine fetuses derived from somatic cell nuclear transfer embryos. Int J Mol Sci. 2014;15:21631–43.
Article PubMed PubMed Central Google Scholar
Zeng F, Huang Z, Yuan Y, Shi J, Cai G, Liu D, et al. Effects of RNAi-mediated knockdown of Xist on the developmental efficiency of cloned male porcine embryos. J Reprod Dev. 2016;62:591–7.
Article CAS PubMed PubMed Central Google Scholar
Benton SJ, McCowan LM, Heazell AE, Grynspan D, Hutcheon JA, Senger C, et al. Placental growth factor as a marker of fetal growth restriction caused by placental dysfunction. Placenta. 2016;42:1–8.
Article CAS PubMed Google Scholar
Estrada J, Sommer J, Collins B, Mir B, Martin A, York A, et al. Swine generated by somatic cell nuclear transfer have increased incidence of intrauterine growth restriction (IUGR). Cloning Stem Cells. 2007;9:229–36.
Article CAS PubMed Google Scholar
Schmidt M, Winter KD, Dantzer V, Li J, Kragh PM, Du Y, et al. Maternal endometrial oedema may increase perinatal mortality of cloned and transgenic piglets. Reprod Fertil Dev. 2011;23:645–53.
Article CAS PubMed Google Scholar
Schmidt M, Winther KD, Secher JO, Callesen H. Postmortem findings in cloned and transgenic piglets dead before weaning. Theriogenology. 2015;84:1014–23.
Article CAS PubMed Google Scholar
Kirchhof N, Carnwath JW, Lemme E, Anastassiadis K, Schöler H, Niemann H. Expression pattern of Oct-4 in preimplantation embryos of different species. Biol Reprod. 2000;63:1698–705.
Article CAS PubMed Google Scholar
Papaioannou VE, Ebert KM. The preimplantation pig embryo: cell number and allocation to trophectoderm and inner cell mass of the blastocyst in vivo and in vitro. Development. 1988;102:793–803.
Article CAS PubMed Google Scholar
Kong Q, Yang X, Zhang H, Liu S, Zhao J, Zhang J, et al. Lineage specification and pluripotency revealed by transcriptome analysis from oocyte to blastocyst in pig. FASEB J. 2020;34:691–705.
Article CAS PubMed Google Scholar
Chen F, Wang T, Feng C, Lin G, Zhu Y, Wu G, et al. Proteome differences in placenta and endometrium between normal and intrauterine growth restricted pig fetuses. PLoS ONE. 2015;10:e0142396.
Article PubMed PubMed Central Google Scholar
Almeida FRCL, Dias ALNA. Pregnancy in pigs: the journey of an early life. Domest Anim Endocrinol. 2022;78:106656.
Article CAS PubMed Google Scholar
Ramsoondar J, Christopherson RJ, Guilbert LJ, Wegmann TG. A porcine trophoblast cell line that secretes growth factors which stimulate porcine macrophages. Biol Reprod. 1993;49:681–94.
Article CAS PubMed Google Scholar
La Bonnardiere C, Flechon JE, Battegay S, Flechon B, Degrouard J, Lefevre F. Polarized porcine trophoblastic cell lines spontaneously secrete interferon-gamma. Placenta. 2002;23:716–26.
Fléchon JE, Laurie S, Notarianni E. Isolation and characterization of a feeder-dependent, porcine trophectoderm cell line obtained from a 9-day blastocyst. Placenta. 1995;16:643–58.
Hou D, Su M, Li X, Li Z, Yun T, Zhao Y, et al. The efficient derivation of trophoblast cells from porcine in vitro fertilized and parthenogenetic blastocysts and culture with ROCK inhibitor Y-27632. PLoS ONE. 2015;10:e0142442.
Article PubMed PubMed Central Google Scholar
Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18(3):246–54.
Okae H, Toh H, Sato T, Hiura H, Takahashi S, Shirane K, et al. Derivation of human trophoblast stem cells. Cell Stem Cell. 2018;22(1):50–63.
Article CAS PubMed Google Scholar
Soncin F, Natale D, Parast MM. Signaling pathways in mouse and human trophoblast differentiation: a comparative review. Cell Mol Life Sci. 2015;72:1291–302.
Article CAS PubMed Google Scholar
Kim E, Hwang SU, Yoo H, Yoon JD, Jeon Y, Kim H, et al. Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors. Theriogenology. 2016;85:601–16.
Dong C, Beltcheva M, Gontarz P, Zhang B, Popli P, Fischer LA, et al. Derivation of trophoblast stem cells from naïve human pluripotent stem cells. Elife. 2020;9:e52504.
Article PubMed PubMed Central Google Scholar
Ramos-Ibeas P, Sang F, Zhu Q, Tang WWC, Withey S, Klisch D, et al. Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. Nat Commun. 2019;10:500.
Article PubMed PubMed Central Google Scholar
Cao S, Han J, Wu J, Li Q, Liu S, Zhang W, et al. Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing. BMC Genomics. 2014;15:4.
Article PubMed PubMed Central Google Scholar
Yu S, Zhang R, Shen Q, Zhu Z, Zhang J, Wu X, et al. ESRRB facilitates the conversion of trophoblast-like stem cells from induced pluripotent stem cells by directly regulating CDX2. Front Cell Dev Biol. 2021;9:712224.
Article PubMed PubMed Central Google Scholar
Kojima J, Fukuda A, Taira H, Kawasaki T, Ito H, Kuji N, et al. Efficient production of trophoblast lineage cells from human induced pluripotent stem cells. Lab Invest. 2017;97:1188–200.
Article CAS PubMed Google Scholar
Lee CQ, Gardner L, Turco M, Zhao N, Murray MJ, Coleman N, et al. What is trophoblast? A combination of criteria define human first-trimester trophoblast. Stem Cell Rep. 2016;6:257–72.
Ao Z, Wu X, Zhou J, Gu T, Wang X, Shi J, et al. Cloned pig fetuses exhibit fatty acid deficiency from impaired placental transport. Mol Reprod Dev. 2019;86:1569–81.
Article CAS PubMed Google Scholar
Ao Z, Liu D, Zhao C, Yue Z, Shi J, Zhou R, et al. Birth weight, umbilical and placental traits in relation to neonatal loss in cloned pigs. Placenta. 2017;57:94–101.
Park JY, Kim JH, Choi YJ, Hwang KC, Cho SK, Park HH, et al. Comparative proteomic analysis of malformed umbilical cords from somatic cell nuclear transfer-derived piglets: implications for early postnatal death. BMC Genomics. 2009;10:511.
Article PubMed PubMed Central Google Scholar
Hirose M, Hada M, Kamimura S, Matoba S, Honda A, Motomura K, et al. Aberrant imprinting in mouse trophoblast stem cells established from somatic cell nuclear transfer-derived embryos. Epigenetics. 2018;13:693–703.
留言 (0)