Synthetic techniques for thermodynamically disfavoured substituted six-membered rings

Sauer, W. H. B. & Schwarz, M. K. Molecular shape diversity of combinatorial libraries: a prerequisite for broad bioactivity. J. Chem. Inf. Comput. Sci. 43, 987–1003 (2003).

Article  CAS  PubMed  Google Scholar 

Ishikawa, M. & Hashimoto, Y. Improvement in aqueous solubility in small molecule drug discovery programs by disruption of molecular planarity and symmetry. J. Med. Chem. 54, 1539–1554 (2011).

Article  CAS  PubMed  Google Scholar 

Subbaiah, M. A. M. & Meanwell, N. A. Bioisosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem. 64, 14046–14128 (2021).

Article  CAS  PubMed  Google Scholar 

Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

Article  CAS  PubMed  Google Scholar 

Epplin, R. C. et al. [2]-Ladderanes as isosteres for meta-substituted aromatic rings and rigidified cyclohexanes. Nat. Commun. 13, 6056 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong, W. et al. Exploiting the sp2 character of bicyclo[1.1.1]pentyl radicals in the transition-metal-free multi-component difunctionalization of [1.1.1]propellane. Nat. Chem. 14, 1068–1077 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frank, N. et al. Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane. Nature 611, 721–726 (2022).

Article  CAS  PubMed  Google Scholar 

Zhang, X. et al. Copper-mediated synthesis of drug-like bicyclopentanes. Nature 580, 220–226 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wiesenfeldt, M. P. et al. General access to cubanes as benzene bioisosteres. Nature 618, 513–518 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aldeghi, M., Malhotra, S., Selwood, D. L. & Chan, A. W. E. Two‐ and three‐dimensional rings in drugs. Chem. Biol. Drug Des. 83, 450–461 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brameld, K. A., Kuhn, B., Reuter, D. C. & Stahl, M. Small molecule conformational preferences derived from crystal structure data. A medicinal chemistry focused analysis. J. Chem. Inf. Model. 48, 1–24 (2008).

Article  CAS  PubMed  Google Scholar 

Thaler, T. et al. Highly diastereoselective Csp3–Csp2 Negishi cross-coupling with 1,2-, 1,3- and 1,4-substituted cycloalkylzinc compounds. Nat. Chem. 2, 125–130 (2010).

Article  CAS  PubMed  Google Scholar 

Havale, S. H. & Pal, M. Medicinal chemistry approaches to the inhibition of dipeptidyl peptidase-4 for the treatment of type 2 diabetes. Bioorg. Med. Chem. 17, 1783–1802 (2009).

Article  CAS  PubMed  Google Scholar 

Simonin, C. et al. Optimization of TRPV6 calcium channel inhibitors using a 3D ligand‐based virtual screening method. Angew. Chem. Int. Ed. 54, 14748–14752 (2015).

Article  CAS  Google Scholar 

Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

Article  CAS  PubMed  Google Scholar 

Johnson, R. A. Conformations of alkylpiperidine amides. J. Org. Chem. 33, 3627–3632 (1968).

Article  CAS  Google Scholar 

Reymond, S. & Cossy, J. Copper-catalyzed Diels–Alder reactions. Chem. Rev. 108, 5359–5406 (2008).

Article  CAS  PubMed  Google Scholar 

Masson, G., Lalli, C., Benohoud, M. & Dagousset, G. Catalytic enantioselective [4 + 2]-cycloaddition: a strategy to access aza-hexacycles. Chem. Soc. Rev. 42, 902–923 (2013).

Article  CAS  PubMed  Google Scholar 

Mu, X., Shibata, Y., Makida, Y. & Fu, G. C. Control of vicinal stereocenters through nickel-catalyzed alkyl–alkyl cross-coupling. Angew. Chem. Int. Ed. 56, 5821–5824 (2017).

Article  CAS  Google Scholar 

Li, J., Ren, Q., Cheng, X., Karaghiosoff, K. & Knochel, P. Chromium(II)-catalyzed diastereoselective and chemoselective Csp3–Csp2 cross-couplings using organomagnesium reagents. J. Am. Chem. Soc. 141, 18127–18135 (2019).

Article  CAS  PubMed  Google Scholar 

Gärtner, D., Welther, A., Rad, B. R., Wolf, R. & Jacobi von Wangelin, A. Heteroatom-free arene-cobalt and arene-iron catalysts for hydrogenations. Angew. Chem. Int. Ed. 53, 3722–3726 (2014).

Article  Google Scholar 

Iwasaki, K., Wan, K. K., Oppedisano, A., Crossley, S. W. M. & Shenvi, R. A. Simple, chemoselective hydrogenation with thermodynamic stereocontrol. J. Am. Chem. Soc. 136, 1300–1303 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peters, B. K. et al. Enantio- and regioselective Ir-catalyzed hydrogenation of di- and trisubstituted cycloalkenes. J. Am. Chem. Soc. 138, 11930–11935 (2016).

Article  CAS  PubMed  Google Scholar 

Mendelsohn, L. N. et al. Visible-light-enhanced cobalt-catalyzed hydrogenation: switchable catalysis enabled by divergence between thermal and photochemical pathways. ACS Catal. 11, 1351–1360 (2021).

Article  CAS  Google Scholar 

Green, S. A., Vásquez-Céspedes, S. & Shenvi, R. A. Iron–nickel dual-catalysis: a new engine for olefin functionalization and the formation of quaternary centers. J. Am. Chem. Soc. 140, 11317–11324 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siegel, S. & Dmuchovsky, B. Stereochemistry and the mechanism of hydrogenation of cyclo-alkenes. IV. 4-Tert-butyl-1-methylcyclohexene and 4-tert-butyl-1-methylenecyclohexane on platinum oxide and a palladium catalyst. J. Am. Chem. Soc. 84, 3132–3136 (1962).

Article  CAS  Google Scholar 

Molander, G. A. & Winterfeld, J. Organolanthanide catalyzed hydrogenation and hydrosilylation of substituted methylenecycloalkanes. J. Organomet. Chem. 524, 275–279 (1996).

Article  CAS  Google Scholar 

Gu, Y. et al. Highly selective hydrogenation of C=C bonds catalyzed by a rhodium hydride. J. Am. Chem. Soc. 143, 9657–9663 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown, H. C. & Krishnamurthy, S. Lithium tri-sec-butylborohydride. New reagent for the reduction of cyclic and bicyclic ketones with super stereoselectivity. Remarkably simple and practical procedure for the conversion of ketones to alcohols in exceptionally high stereochemical purity. J. Am. Chem. Soc. 94, 7159–7161 (1972).

Article  CAS  Google Scholar 

Brown, C. A. Kaliation. II. Rapid quantitative reaction of potassium hydride with weak Lewis acids. Highly convenient new route to hindered complex borohydrides. J. Am. Chem. Soc. 95, 4100–4102 (1973).

Article  CAS  Google Scholar 

Krishnamurthy, S. & Brown, H. C. Lithium trisiamylborohydride. A new sterically hindered reagent for the reduction of cyclic ketones with exceptional stereoselectivity. J. Am. Chem. Soc. 98, 3383–3384 (1976).

Article  CAS  Google Scholar 

Zhong, R., Wei, Z., Zhang, W., Liu, S. & Liu, Q. A practical and stereoselective in situ NHC-cobalt catalytic system for hydrogenation of ketones and aldehydes. Chem 5, 1552–1566 (2019).

Article  CAS  Google Scholar 

Xie, J.-H. et al. RuII-SDP-complex-catalyzed asymmetric hydrogenation of ketones. Effect of the alkali metal cation in the reaction. J. Org. Chem. 70, 2967–2973 (2005).

Article  CAS  PubMed  Google Scholar 

Hudlicky, T. Introduction to enzymes in synthesis. Chem. Rev. 111, 3995–3997 (2011).

Article  CAS  PubMed  Google Scholar 

Lloyd, M. D. et al. Racemases and epimerases operating through a 1,1-proton transfer mechanism: reactivity, mechanism and inhibition. Chem. Soc. Rev. 50, 5952–5984 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luan, P. et al. Design of de novo three-enzyme nanoreactors for stereodivergent synthesis of α-substituted cyclohexanols. ACS Catal. 12, 7550–7558 (2022).

Article  CAS  Google Scholar 

DeHovitz, J. S. et al. Static to inducibly dynamic stereocontrol: the convergent use of racemic β-substituted ketones. Science 369, 1113–1118 (2020). This work discloses a photo/enzyme synergistic catalysis strategy for the transformation of β-substituted ketones into stereodefined 1,3-trans γ-substituted alcohols via dynamic kinetic resolution.

Article  CAS  PubMed  Google Scholar 

France, S. P., Hepworth, L. J., Turner, N. J. & Flitsch, S. L. Constructing biocatalytic cascades: in vitro and in vivo approaches to de novo multi-enzyme pathways. ACS Catal. 7, 710–724 (2016).

Article 

留言 (0)

沒有登入
gif