Machine Learning from Veno-Venous Extracorporeal Membrane Oxygenation Identifies Factors Associated with Neurological Outcomes

Munshi L, Walkey A, Goligher E, Pham T, Uleryk EM, Fan E (2019) Venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review and meta-analysis. Lancet Respir Med 7(2):163–172. https://doi.org/10.1016/S2213-2600(18)30452-1

Article  PubMed  Google Scholar 

Luyt CE, Bréchot N, Demondion P et al (2016) Brain injury during venovenous extracorporeal membrane oxygenation. Intensive Care Med 42(5):897–907. https://doi.org/10.1007/s00134-016-4318-3

Article  CAS  PubMed  Google Scholar 

Lorusso R, Belliato M, Mazzeffi M et al (2021) Neurological complications during veno-venous extracorporeal membrane oxygenation: does the configuration matter? A retrospective analysis of the ELSO database. Crit Care 25(1):107. https://doi.org/10.1186/s13054-021-03533-5

Article  PubMed  PubMed Central  Google Scholar 

Lorusso R, Gelsomino S, Parise O et al (2017) Neurologic injury in adults supported with veno-venous extracorporeal membrane oxygenation for respiratory failure: findings from the extracorporeal life support organization database. Crit Care Med 45(8):1389–1397. https://doi.org/10.1097/CCM.0000000000002502

Article  PubMed  Google Scholar 

Supady A, DellaVolpe J, Taccone FS et al (2021) Outcome Prediction in patients with severe COVID-19 requiring extracorporeal membrane oxygenation-A retrospective international multicenter study. Membranes 11(3):170. https://doi.org/10.3390/membranes11030170

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ong CS, Etchill E, Dong J et al (2023) Neuromonitoring detects brain injury in patients receiving extracorporeal membrane oxygenation support. J Thorac Cardiovasc Surg 165(6):2104-2110.e1. https://doi.org/10.1016/j.jtcvs.2021.09.063

Article  PubMed  Google Scholar 

Goradia S, Sardaneh AA, Narayan SW, Penm J, Patanwala AE (2021) Vasopressor dose equivalence: a scoping review and suggested formula. J Crit Care 61:233–240. https://doi.org/10.1016/j.jcrc.2020.11.002

Article  CAS  PubMed  Google Scholar 

Shadbahr T, Roberts M, Stanczuk J et al (2023) The impact of imputation quality on machine learning classifiers for datasets with missing values. Commun Med 3(1):139. https://doi.org/10.1038/s43856-023-00356-z

Article  PubMed  PubMed Central  Google Scholar 

Cavayas YA, Munshi L, Del Sorbo L, Fan E (2020) The early change in PaCO2 after extracorporeal membrane oxygenation initiation is associated with neurological complications. Am J Respir Crit Care Med 201(12):1525–1535. https://doi.org/10.1164/rccm.202001-0023OC

Article  CAS  PubMed  Google Scholar 

Strassmann S, Merten M, Schäfer S et al (2019) Impact of sweep gas flow on extracorporeal CO2 removal (ECCO2R). Intensive Care Med Exp 7(1):17. https://doi.org/10.1186/s40635-019-0244-3

Article  PubMed  PubMed Central  Google Scholar 

Zhang H, Xu J, Yang X et al (2021) narrative review of neurologic complications in adults on ECMO: prevalence, risks, outcomes, and prevention strategies. Front Med 8:713333. https://doi.org/10.3389/fmed.2021.713333

Article  Google Scholar 

Hunsicker O, Beck L, Krannich A et al (2021) Timing, outcome, and risk factors of intracranial hemorrhage in acute respiratory distress syndrome patients during venovenous extracorporeal membrane oxygenation. Crit Care Med 49(2):e120–e129. https://doi.org/10.1097/CCM.0000000000004762

Article  PubMed  Google Scholar 

Muellenbach RM, Kilgenstein C, Kranke P et al (2014) Effects of venovenous extracorporeal membrane oxygenation on cerebral oxygenation in hypercapnic ARDS. Perfusion 29(2):139–141. https://doi.org/10.1177/0267659113497073

Article  CAS  PubMed  Google Scholar 

Rout MW, Lane DJ, Wollner L (1971) Prognosis in acute cerebrovascular accidents in relation to respiratory pattern and blood gas tensions. Br Med J 3(5765):7–9. https://doi.org/10.1136/bmj.3.5765.7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho SM, Canner J, Caturegli G et al (2021) Risk factors of ischemic and hemorrhagic strokes during venovenous extracorporeal membrane oxygenation: analysis of data from the extracorporeal life support organization registry. Crit Care Med 49(1):91–101. https://doi.org/10.1097/CCM.0000000000004707

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shou BL, Ong CS, Premraj L et al (2023) Arterial oxygen and carbon dioxide tension and acute brain injury in extracorporeal cardiopulmonary resuscitation patients: analysis of the extracorporeal life support organization registry. J Heart Lung Transpl Off Publ Int Soc Heart Transplant 42(4):503–511. https://doi.org/10.1016/j.healun.2022.10.019

Article  Google Scholar 

Hafner S, Beloncle F, Koch A, Radermacher P, Asfar P (2015) Hyperoxia in intensive care, emergency, and peri-operative medicine: Dr. Jekyll or Mr. Hyde? A 2015 update. Ann Intensive Care 5(1):42. https://doi.org/10.1186/s13613-015-0084-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai J, Abudou H, Chen Y et al (2023) The effects of ECMO on neurological function recovery of critical patients: a double-edged sword. Front Med 10:1117214. https://doi.org/10.3389/fmed.2023.1117214

Article  Google Scholar 

Giani M, Lucchini A, Magni G et al (2023) How to avoid rapid carbon dioxide changes at the start of veno-venous extracorporeal membrane oxygenation: role of end-tidal CO2 monitoring. Perfusion 38(4):684–688. https://doi.org/10.1177/02676591221079508

Article  PubMed  Google Scholar 

Bembea MM, Lee R, Masten D et al (2013) Magnitude of arterial carbon dioxide change at initiation of extracorporeal membrane oxygenation support is associated with survival. J Extra Corpor Technol 45(1):26–32

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif