Gene–environment interactions in human health

Brandes, N., Weissbrod, O. & Linial, M. Open problems in human trait genetics. Genome Biol. 23, 131 (2022). This review comprehensively discusses the major issues and challenges moving forward in human genetics.

Article  PubMed  PubMed Central  Google Scholar 

Vicente, C. T., Revez, J. A. & Ferreira, M. A. R. Lessons from ten years of genome-wide association studies of asthma. Clin. Transl. Immunol. 6, e165 (2017).

Article  Google Scholar 

Tsuo, K. et al. Multi-ancestry meta-analysis of asthma identifies novel associations and highlights the value of increased power and diversity. Cell Genomics 2, 100212 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trivedi, M. & Denton, E. Asthma in children and adults — what are the differences and what can they tell us about asthma? Front. Pediatr. 7, 256 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Sandoval-Motta, S., Aldana, M., Martínez-Romero, E. & Frank, A. The human microbiome and the missing heritability problem. Front. Genet. 8, 80 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Manning, A. K. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 659–669 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pingault, J.-B. et al. Using genetic data to strengthen causal inference in observational research. Nat. Rev. Genet. 19, 566–580 (2018).

Article  CAS  PubMed  Google Scholar 

Ritz, B. R. et al. Lessons learned from past gene–environment interaction successes. Am. J. Epidemiol. 186, 778–786 (2017).

Article  PubMed  PubMed Central  Google Scholar 

McAllister, K. et al. Current challenges and new opportunities for gene–environment interaction studies of complex diseases. Am. J. Epidemiol. 186, 753–761 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Thomas, D. Gene–environment-wide association studies: emerging approaches. Nat. Rev. Genet. 11, 259–272 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Virolainen, S. J., VonHandorf, A., Viel, K. C. M. F., Weirauch, M. T. & Kottyan, L. C. Gene–environment interactions and their impact on human health. Genes. Immun. 24, 1–11 (2023).

Article  PubMed  Google Scholar 

Wu, H., Eckhardt, C. M. & Baccarelli, A. A. Molecular mechanisms of environmental exposures and human disease. Nat. Rev. Genet. 24, 332–344 (2023). This review highlights the impact of environmental factors on molecular mechanisms and the challenges in exposome approaches.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Breton, C. V. et al. Exploring the evidence for epigenetic regulation of environmental influences on child health across generations. Commun. Biol. 4, 769 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Marderstein, A. R. et al. Leveraging phenotypic variability to identify genetic interactions in human phenotypes. Am. J. Hum. Genet. 108, 49–67 (2021).

Article  CAS  PubMed  Google Scholar 

Westerman, K. E. et al. Variance-quantitative trait loci enable systematic discovery of gene–environment interactions for cardiometabolic serum biomarkers. Nat. Commun. 13, 3993 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi, G. Genome-wide variance quantitative trait locus analysis suggests small interaction effects in blood pressure traits. Sci. Rep. 12, 12649 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winkler, T. W. et al. Quality control and conduct of genome-wide association meta-analyses. Nat. Protoc. 9, 1192–1212 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Ives, C. et al. Linking complex disease and exposure data — insights from an environmental and occupational health study. J. Expo. Sci. Environ. Epidemiol. 33, 12–16 (2023).

Article  PubMed  Google Scholar 

Knapp, E. A. et al. The Environmental Influences on Child Health Outcomes (ECHO)-wide cohort. Am. J. Epidemiol. https://doi.org/10.1093/aje/kwad071 (2023).

Hamilton, C. M. et al. The PhenX Toolkit: get the most from your measures. Am. J. Epidemiol. 174, 253–260 (2011).

Article  PubMed  PubMed Central  Google Scholar 

White, I. R., Royston, P. & Wood, A. M. Multiple imputation using chained equations: issues and guidance for practice. Stat. Med. 30, 377–399 (2011).

Article  PubMed  Google Scholar 

Austin, P. C., White, I. R., Lee, D. S. & van Buuren, S. Missing data in clinical research: a tutorial on multiple imputation. Can. J. Cardiol. 37, 1322–1331 (2021).

Article  PubMed  Google Scholar 

Hormozdiari, F. et al. Imputing phenotypes for genome-wide association studies. Am. J. Hum. Genet. 99, 89–103 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dahl, A. et al. A multiple-phenotype imputation method for genetic studies. Nat. Genet. 48, 466–472 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, H. et al. Lifestyle risk score: handling missingness of individual lifestyle components in meta-analysis of gene-by-lifestyle interactions. Eur. J. Hum. Genet. 29, 839–850 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Moore, C. M., Jacobson, S. A. & Fingerlin, T. E. Power and sample size calculations for genetic association studies in the presence of genetic model misspecification. Hum. Hered. 84, 256–271 (2019).

Article  CAS  PubMed  Google Scholar 

Kooperberg, C. & Hsu, L. powerGWASinteraction: power calculations for G × E and G × G interactions for GWAS. R package version 1.1.3 https://CRAN.R-project.org/package=powerGWASinteraction (2015).

Gauderman, W. J. Sample size requirements for matched case–control studies of gene–environment interaction. Stat. Med. 21, 35–50 (2002).

Article  PubMed  Google Scholar 

Gauderman, W. J. Candidate gene association analysis for a quantitative trait, using parent–offspring trios. Genet. Epidemiol. 25, 327–338 (2003).

Article  PubMed  Google Scholar 

Gjerdevik, M. et al. Haplin power analysis: a software module for power and sample size calculations in genetic association analyses of family triads and unrelated controls. BMC Bioinforma. 20, 165 (2019).

Article  Google Scholar 

Gaye, A., Burton, T. W. Y. & Burton, P. R. ESPRESSO: taking into account assessment errors on outcome and exposures in power analysis for association studies. Bioinformatics 31, 2691–2696 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCaw, Z. R., Lane, J. M., Saxena, R., Redline, S. & Lin, X. Operating characteristics of the rank-based inverse normal transformation for quantitative trait analysis in genome-wide association studies. Biometrics 76, 1262–1272 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ueki, M., Fujii, M. & Tamiya, G.for Alzheimer’s Disease Neuroimaging Initiative and the Alzheimer’s Disease Metabolomics Consortium Quick assessment for systematic test statistic inflation/deflation due to null model misspecifications in genome-wide environment interaction studies. PLoS ONE 14, e0219825 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi, G. & Nehorai, A. Robustness of meta-analyses in finding gene × environment interactions. PLoS ONE 12, e0171446 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Rao, D. C. et al. Multiancestry study of gene–lifestyle interactions for cardiovascular traits in 610 475 individuals from 124 cohorts: design and rationale. Circ. Cardiovasc. Genet. 10, e001649 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Young, A. I. et al. Relatedness disequilibrium regression estimates heritability without environmental bias. Nat. Genet. 50, 1304–1310 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernabeu, E. et al. Sex differences in genetic architecture in the UK Biobank. Nat. Genet. 53, 1283–1289 (2021).

Article  CAS  PubMed  Google Scholar 

Wang, H. et al. Genotype-by-environment interactions inferred from genetic effects on phenotypic variability in the UK Biobank. Sci. Adv. 5, eaaw3538 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Laville, V. et al. Gene–lifestyle interactions in the genomics of human complex traits. Eur. J. Hum. Genet. 30, 730–739 (2022).

Article  PubMed 

留言 (0)

沒有登入
gif