DNMT1 driven by mouse amniotic fluid mesenchymal stem cell exosomes improved corneal cryoinjury via inducing microRNA-33 promoter DNA hypermethylation modification in corneal epithelium cells

Zhao S, Fei X, Liu T, Liu Y. Low temperature induces cryoinjury in mouse corneal endothelial cells by stimulating the Stk11-p53 signal pathway. Mol Med Rep. 2015;12(5):6612–6. https://doi.org/10.3892/mmr.2015.4301.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fei X, Cai Y, Lin F, Huang Y, Liu T, Liu Y. Amniotic fluid mesenchymal stem cells repair mouse corneal cold injury by promoting mRNA N4-acetylcytidine modification and ETV4/JUN/CCND2 signal axis activation. Hum Cell. 2021;34(1):86–98. https://doi.org/10.1007/s13577-020-00442-7.

Article  CAS  PubMed  Google Scholar 

Williams KA, Irani YD, Klebe S. Novel therapeutic approaches for corneal disease. Discov Med. 2013;15(84):291–9.

PubMed  Google Scholar 

Yu F, Gong D, Yan D, Wang H, Witman N, Lu Y, et al. Enhanced adipose-derived stem cells with IGF-1-modified mRNA promote wound healing following corneal injury. Mol Ther. 2023;31(8):2454–71. https://doi.org/10.1016/j.ymthe.2023.05.002.

Article  CAS  PubMed  Google Scholar 

Mimura T, Yamagami S, Amano S. Corneal endothelial regeneration and tissue engineering. Prog Retin Eye Res. 2013;35:1–17.

Article  CAS  PubMed  Google Scholar 

Peh GS, Beuerman RW, Colman A, Tan DT, Mehta JS. Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation. 2011;91(8):811–9. https://doi.org/10.1097/TP.0b013e3182111f01.

Article  PubMed  Google Scholar 

van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28. https://doi.org/10.1038/nrm.2017.125.

Article  CAS  PubMed  Google Scholar 

Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, Andaloussi SE, et al. Extracellular vesicles as drug delivery systems: why and how? Adv Drug Deliv Rev. 2020;159:332–43. https://doi.org/10.1016/j.addr.2020.04.004.

Article  CAS  PubMed  Google Scholar 

Lin Z, Wu Y, Xu Y, Li G, Li Z, Liu T. Mesenchymal stem cell-derived exosomes in cancer therapy resistance: recent advances and therapeutic potential. Mol Cancer. 2022;21(1):179. https://doi.org/10.1186/s12943-022-01650-5.

Article  PubMed  PubMed Central  Google Scholar 

Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther. 2018;9(1):63. https://doi.org/10.1186/s13287-018-0791-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gang D, Yu CJ, Zhu S, Zhu P, Nasser MI. Application of mesenchymal stem cell-derived exosomes in kidney diseases. Cell Immunol. 2021;364:104358. https://doi.org/10.1016/j.cellimm.2021.104358.

Article  CAS  PubMed  Google Scholar 

Hade MD, Suire CN, Suo Z. Mesenchymal stem cell-derived exosomes: applications in regenerative medicine. Cells. 2021. https://doi.org/10.3390/cells10081959.

Article  PubMed  PubMed Central  Google Scholar 

Liu T, Huang Y, Zhang J, Qin W, Chi H, Chen J, et al. Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model. Stem Cells Dev. 2014;23(13):1548–57. https://doi.org/10.1089/scd.2013.0371.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geng Z, Chen H, Zou G, Yuan L, Liu P, Li B, et al. Human amniotic fluid mesenchymal stem cell-derived exosomes inhibit apoptosis in ovarian granulosa cell via miR-369-3p/YAF2/PDCD5/p53 pathway. Oxid Med Cell Longev. 2022;2022:3695848. https://doi.org/10.1155/2022/3695848.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zou G, Ji Q, Geng Z, Du X, Jiang L, Liu T. miR-31-5p from placental and peripheral blood exosomes is a potential biomarker to diagnose preeclampsia. Hereditas. 2022;159(1):35. https://doi.org/10.1186/s41065-022-00250-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nie X, Chen H, Xiong Y, Chen J, Liu T. Anisomycin has a potential toxicity of promoting cuproptosis in human ovarian cancer stem cells by attenuating YY1/lipoic acid pathway activation. J Cancer. 2022;13(14):3503–14. https://doi.org/10.7150/jca.77445.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qi Z, Yan Z, Wang Y, Ji N, Yang X, Zhang A, et al. Ginsenoside Rh2 Inhibits NLRP3 inflammasome activation and improves exosomes to alleviate hypoxia-induced myocardial injury. Front Immunol. 2022;13:883946. https://doi.org/10.3389/fimmu.2022.883946.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim HH, Shim YR, Choi SE, Falana TE, Yoo JK, Ahn SH, et al. Exosome-based delivery of super-repressor IkappaBalpha alleviates alcohol-associated liver injury in mice. Pharmaceutics. 2023. https://doi.org/10.3390/pharmaceutics15020636.

Article  PubMed  PubMed Central  Google Scholar 

Han SB, Ang H, Balehosur D, Peh G, Chaurasia SS, Tan DT, et al. A mouse model of corneal endothelial decompensation using cryoinjury. Mol Vis. 2013;19:1222–30.

PubMed  PubMed Central  Google Scholar 

Mishra V. Dot-blotting: a quick method for expression analysis of recombinant proteins. Curr Protoc. 2022;2(9): e546. https://doi.org/10.1002/cpz1.546.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamid AA, Joharry MK, Mun-Fun H, Hamzah SN, Rejali Z, Yazid MN, et al. Highly potent stem cells from full-term amniotic fluid: a realistic perspective. Reprod Biol. 2017;17(1):9–18. https://doi.org/10.1016/j.repbio.2017.02.001.

Article  PubMed  Google Scholar 

Zhou J, Wang D, Liang T, Guo Q, Zhang G. Amniotic fluid-derived mesenchymal stem cells: characteristics and therapeutic applications. Arch Gynecol Obstet. 2014;290(2):223–31. https://doi.org/10.1007/s00404-014-3231-7.

Article  CAS  PubMed  Google Scholar 

Harrell CR, Gazdic M, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, et al. Therapeutic potential of amniotic fluid derived mesenchymal stem cells based on their differentiation capacity and immunomodulatory properties. Curr Stem Cell Res Ther. 2019;14(4):327–36. https://doi.org/10.2174/1574888X14666190222201749.

Article  CAS  PubMed  Google Scholar 

Joerger-Messerli MS, Marx C, Oppliger B, Mueller M, Surbek DV, Schoeberlein A. Mesenchymal stem cells from Wharton’s jelly and amniotic fluid. Best Pract Res Clin Obstet Gynaecol. 2016;31:30–44. https://doi.org/10.1016/j.bpobgyn.2015.07.006.

Article  PubMed  Google Scholar 

Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92. https://doi.org/10.1038/nrg3230.

Article  CAS  PubMed  Google Scholar 

van der Laan L, Rooney K, Trooster TM, Mannens MM, Sadikovic B, Henneman P. DNA methylation episignatures: insight into copy number variation. Epigenomics. 2022;14(21):1373–88. https://doi.org/10.2217/epi-2022-0287.

Article  CAS  PubMed  Google Scholar 

Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6):371–84. https://doi.org/10.1038/s41576-018-0004-3.

Article  CAS  PubMed  Google Scholar 

Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13(5):358–69. https://doi.org/10.1038/nrg3198.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hwang H, Chang HR, Baek D. Determinants of functional microRNA targeting. Mol Cells. 2023;46(1):21–32. https://doi.org/10.14348/molcells.2023.2157.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng W, Liu T, Wan X, Gao Y, Wang H. MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J. 2012;279(11):2047–59. https://doi.org/10.1111/j.1742-4658.2012.08589.x.

Article  CAS  PubMed  Google Scholar 

Elgharably H, Okamoto T, Ayyat KS, Niikawa H, Meade S, Farver C, et al. Human lungs airway epithelium upregulate microRNA-17 and microRNA-548b in response to cold ischemia and ex vivo reperfusion. Transplantation. 2020;104(9):1842–52. https://doi.org/10.1097/TP.0000000000003370.

Article  CAS  PubMed  Google Scholar 

Yin YC, Li XH, Rao X, Li YJ, Du J. Involvement of microRNA/cystine/glutamate transporter in cold-stressed gastric mucosa injury. Front Pharmacol. 2022;13:968098. https://doi.org/10.3389/fphar.2022.968098.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hadj-Moussa H, Storey KB. Micromanaging freeze tolerance: the biogenesis and regulation of neuroprotective microRNAs in frozen brains. Cell Mol Life Sci: CMLS. 2018;75(19):3635–47. https://doi.org/10.1007/s00018-018-2821-0.

留言 (0)

沒有登入
gif