Akshoomoff N, Beaumont JL, Bauer PJ, Dikmen SS, Gershon RC, Mungas D, Slotkin J, Tulsky D, Weintraub S, Zelazo PD et al (2013) Viii. nih toolbox cognition battery (cb): composite scores of crystallized, fluid, and overall cognition. Monogr Soc Res Child Dev 78:119–132
Article PubMed PubMed Central Google Scholar
Alin A (2010) Wiley interdisciplinary reviews: computational statistics. Multicollinearity 2:370–374
Anderson B (2003) Brain imaging and g. In: The scientific study of general intelligence. Elsevier, pp 29–39
Breiman L (2001) Random forests. Machine learning 45:5–32
Brueggeman, L., Koomar, T., Huang, Y., Hoskins, B., Tong, T., Kent, J., Bahl, E., Johnson, C.E., Powers, A., Langbehn, D., et al., 2019. Ensemble modeling of neurocognitive performance using MRI-derived brain structure volumes, in: Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction, Springer. pp. 124–132
Casey B, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, Soules ME, Teslovich T, Dellarco DV, Garavan H et al (2018) The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. Dev Cogn Neurosci 32:43–54
Article CAS PubMed PubMed Central Google Scholar
Chang CC, Lin CJ (2011) Libsvm: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2:27
Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794
Choi YY, Shamosh NA, Cho SH, DeYoung CG, Lee MJ, Lee JM, Kim SI, Cho ZH, Kim K, Gray JR et al (2008) Multiple bases of human intelligence revealed by cortical thickness and neural activation. J Neurosci 28:10323–10329
Article CAS PubMed PubMed Central Google Scholar
Cox SR, Ritchie SJ, Fawns-Ritchie C, Tucker-Drob EM, Deary IJ (2019) Structural brain imaging correlates of general intelligence in uk biobank. Intelligence 76:101376
Article CAS PubMed PubMed Central Google Scholar
Daoud, J.I., 2017. Multicollinearity and regression analysis, in: Journal of Physics: Conference Series, IOP Publishing. p. 012009
Dougherty ER (2001) Small sample issues for microarray-based classification. Comp Funct Genomics 2:28–34
Article CAS PubMed PubMed Central Google Scholar
Evans AC, Group BDC et al (2006) The NIH MRI study of normal brain development. Neuroimage 30:184–202
Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1
Article PubMed PubMed Central Google Scholar
Gignac GE, Bates TC (2017) Brain volume and intelligence: The moderating role of intelligence measurement quality. Intelligence 64:18–29
Guerdan, L., Sun, P., Rowland, C., Harrison, L., Tang, Z., Wergeles, N., Shang, Y., 2019. Deep learning vs. classical machine learning: A comparison of methods for fluid intelligence prediction, in: Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction, Springer. pp. 17–25
Hagler, D.J., Hatton, S.N., Makowski, C., Cornejo, M.D., Fair, D.A., Dick, A.S., Sutherland, M.T., Casey, B., Barch, D.M., Harms, M.P., et al., 2018. Image processing and analysis methods for the adolescent brain cognitive development study. biorxiv. Published online November 4, 457739
Haier RJ, Jung RE, Yeo RA, Head K, Alkire MT (2005) The neuroanatomy of general intelligence: sex matters. Neuroimage 25:320–327
Jernigan TL, Brown TT, Hagler DJ Jr, Akshoomoff N, Bartsch H, Newman E, Thompson WK, Bloss CS, Murray SS, Schork N et al (2016) The pediatric imaging, neurocognition, and genetics (ping) data repository. Neuroimage 124:1149–1154
Jones SE, Buchbinder BR, Aharon I (2000) Three-dimensional mapping of cortical thickness using laplace’s equation. Hum Brain Mapp 11:12–32
Article CAS PubMed PubMed Central Google Scholar
Karama S, Ad-Dab’bagh Y, Haier R, Deary I, Lyttelton O, Lepage C, Evans A (2009) Positive association between cognitive ability and cortical thickness in a representative us sample of healthy 6 to 18 year-olds. Intelligence 37:145–155
Karama S, Colom R, Johnson W, Deary IJ, Haier R, Waber DP, Lepage C, Ganjavi H, Jung R, Evans AC et al (2011) Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18. Neuroimage 55:1443–1453
Kharabian Masouleh, S., Eickhoff, S., Hoffstaedter, F., Genon, S., 2019. Alzheimer’s disease neuroimaging i. empirical examination of the replicability of associations between brain structure and psychological variables. elife 8
Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab’bagh Y, MacDonald D, Lee JM, Kim SI, Evans AC (2005) Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27:210–221
Lavery MR, Acharya P, Sivo SA, Xu L (2019) Number of predictors and multicollinearity: What are their effects on error and bias in regression? Communications in Statistics-Simulation and Computation 48:27–38
Leeuwenberg, A.M., van Smeden, M., Langendijk, J.A., van der Schaaf, A., Mauer, M.E., Moons, K.G., Reitsma, J.B., Schuit, E., 2021. Comparing methods addressing multi-collinearity when developing prediction models. arXiv preprint arXiv:2101.01603
Lewis JD, Evans AC, Tohka J, Group BDC et al (2018) T1 white/gray contrast as a predictor of chronological age, and an index of cognitive performance. Neuroimage 173:341–350
Li M, Jiang M, Zhang G, Liu Y, Zhou X (2022) Prediction of fluid intelligence from t1-w MRI images: A precise two-step deep learning framework. PLoS ONE 17:e0268707
Article CAS PubMed PubMed Central Google Scholar
Luders E, Narr KL, Thompson PM, Toga AW (2009) Neuroanatomical correlates of intelligence. Intelligence 37:156–163
Article PubMed PubMed Central Google Scholar
McDaniel MA (2005) Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence 33:337–346
Menary K, Collins PF, Porter JN, Muetzel R, Olson EA, Kumar V, Steinbach M, Lim KO, Luciana M et al (2013) Associations between cortical thickness and general intelligence in children, adolescents and young adults. Intelligence 41:597–606
Article PubMed PubMed Central Google Scholar
Mihalik, A., Brudfors, M., Robu, M., Ferreira, F.S., Lin, H., Rau, A., Wu, T., Blumberg, S.B., Kanber, B., Tariq, M., et al., 2019. ABCD neurocognitive prediction challenge 2019: predicting individual fluid intelligence scores from structural MRI using probabilistic segmentation and kernel ridge regression, in: Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction, Springer. pp. 133–142
Narr KL, Woods RP, Thompson PM, Szeszko P, Robinson D, Dimtcheva T, Gurbani M, Toga AW, Bilder RM (2007) Relationships between iq and regional cortical gray matter thickness in healthy adults. Cereb Cortex 17:2163–2171
Nave G, Jung WH, Karlsson Linnér R, Kable JW, Koellinger PD (2019) Are bigger brains smarter? evidence from a large-scale preregistered study. Psychol Sci 30:43–54
Nooner KB, Colcombe S, Tobe R, Mennes M, Benedict M, Moreno A, Panek L, Brown S, Zavitz S, Li Q et al (2012) The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry. Front Neurosci 6:152
Article PubMed PubMed Central Google Scholar
Oxtoby, N.P., Ferreira, F.S., Mihalik, A., Wu, T., Brudfors, M., Lin, H., Rau, A., Blumberg, S.B., Robu, M., Zor, C., et al., 2019. ABCD neurocognitive prediction challenge 2019: Predicting individual residual fluid intelligence scores from cortical grey matter morphology, in: Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction, Springer. pp. 114–123
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al., 2011. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830
Pfefferbaum A, Kwon D, Brumback T, Thompson WK, Cummins K, Tapert SF, Brown SA, Colrain IM, Baker FC, Prouty D et al (2018) Altered brain developmental trajectories in adolescents after initiating drinking. Am J Psychiatry 175:370–380
Pietschnig J, Penke L, Wicherts JM, Zeiler M, Voracek M (2015) Meta-analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean? Neuroscience & Biobehavioral Reviews 57:411–432
Pohl KM, Thompson WK, Adeli E, Linguraru MG (2019) Adolescent Brain Cognitive Development Neurocognitive Prediction: First Challenge, ABCD-NP 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings. volume 11791. Springer Nature
Pölsterl, S., Gutiérrez-Becker, B., Sarasua, I., Roy, A.G., Wachinger, C., 2019. Prediction of fluid intelligence from t1-weighted magnetic resonance images, in: Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction, Springer. pp. 35–46
Rebsamen, M., Rummel, C., Mürner-Lavanchy, I., Reyes, M., Wiest, R., McKinley, R., 2019. Surface-based brain morphometry for the prediction of fluid intelligence in the neurocognitive prediction challenge 2019, in: Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction, Springer. pp. 26–34
Rushton JP, Ankney CD (1996) Brain size and cognitive ability: Correlations with age, sex, social class, and race. Psychonomic Bulletin & Review 3:21–36
Rushton JP, Ankney CD (2009) Whole brain size and general mental ability: a review. Int J Neurosci 119:692–732
Article PubMed Central Google Scholar
Schnack HG, Van Haren NE, Brouwer RM, Evans A, Durston S, Boomsma DI, Kahn RS, Hulshoff Pol HE (2015) Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cereb Cortex 25:1608–1617
Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Evans A, Rapoport J, Giedd J (2006) Intellectual ability and cortical development in children and adolescents. Nature 440:676–679
Article CAS PubMed Google Scholar
Tohka J, Moradi E, Huttunen H (2016) Comparison of feature selection techniques in machine learning for anatomical brain MRI in dementia. Neuroinformatics 14:279–296
Valverde, J.M., Imani, V., Lewis, J.D., Tohka, J., 2019. Predicting intelligence based on cortical wm/gm contrast, cortical thickness and volumetry, in: Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction, Springer. pp. 57–65
Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, W.M.H., et al., 2013. The wu-minn human connectome project: an overview. Neuroimage 80, 62–79
Van Valen L (1974) Brain size and intelligence in man. Am J Phys Anthropol 40:417–423
Vang, Y.S., Cao, Y., Xie, X., 2019. A combined deep learning-gradient boosting machine framework for fluid intelligence prediction, in: Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction, Springer. pp. 1–8
Varoquaux G (2018) Cross-validation failure: Small sample sizes lead to large error bars. Neuroimage 180:68–77
Vernon, P.A., Wickett, J.C., Bazana, P.G., Stelmack, R.M., 2000. The neuropsychology and psychophysiology of human intelligence., in: Sternberg, R.J. (Ed.), Handbook of intelligence. Cambridge University Press, pp. 245–264
Wickett JC, Vernon PA, Lee DH (1994) In vivo brain size, head perimeter, and intelligence in a sample of healthy adult females. Personality Individ Differ 16:831–838
留言 (0)