Intelligence and cortical morphometry: caveats in brain-behavior associations

Akshoomoff N, Beaumont JL, Bauer PJ, Dikmen SS, Gershon RC, Mungas D, Slotkin J, Tulsky D, Weintraub S, Zelazo PD et al (2013) Viii. nih toolbox cognition battery (cb): composite scores of crystallized, fluid, and overall cognition. Monogr Soc Res Child Dev 78:119–132

Article  PubMed  PubMed Central  Google Scholar 

Alin A (2010) Wiley interdisciplinary reviews: computational statistics. Multicollinearity 2:370–374

Google Scholar 

Anderson B (2003) Brain imaging and g. In: The scientific study of general intelligence. Elsevier, pp 29–39

Breiman L (2001) Random forests. Machine learning 45:5–32

Article  Google Scholar 

Brueggeman, L., Koomar, T., Huang, Y., Hoskins, B., Tong, T., Kent, J., Bahl, E., Johnson, C.E., Powers, A., Langbehn, D., et al., 2019. Ensemble modeling of neurocognitive performance using MRI-derived brain structure volumes, in: Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction, Springer. pp. 124–132

Casey B, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, Soules ME, Teslovich T, Dellarco DV, Garavan H et al (2018) The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. Dev Cogn Neurosci 32:43–54

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang CC, Lin CJ (2011) Libsvm: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2:27

Google Scholar 

Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794

Choi YY, Shamosh NA, Cho SH, DeYoung CG, Lee MJ, Lee JM, Kim SI, Cho ZH, Kim K, Gray JR et al (2008) Multiple bases of human intelligence revealed by cortical thickness and neural activation. J Neurosci 28:10323–10329

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cox SR, Ritchie SJ, Fawns-Ritchie C, Tucker-Drob EM, Deary IJ (2019) Structural brain imaging correlates of general intelligence in uk biobank. Intelligence 76:101376

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daoud, J.I., 2017. Multicollinearity and regression analysis, in: Journal of Physics: Conference Series, IOP Publishing. p. 012009

Dougherty ER (2001) Small sample issues for microarray-based classification. Comp Funct Genomics 2:28–34

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evans AC, Group BDC et al (2006) The NIH MRI study of normal brain development. Neuroimage 30:184–202

Article  PubMed  Google Scholar 

Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1

Article  PubMed  PubMed Central  Google Scholar 

Gignac GE, Bates TC (2017) Brain volume and intelligence: The moderating role of intelligence measurement quality. Intelligence 64:18–29

Article  Google Scholar 

Guerdan, L., Sun, P., Rowland, C., Harrison, L., Tang, Z., Wergeles, N., Shang, Y., 2019. Deep learning vs. classical machine learning: A comparison of methods for fluid intelligence prediction, in: Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction, Springer. pp. 17–25

Hagler, D.J., Hatton, S.N., Makowski, C., Cornejo, M.D., Fair, D.A., Dick, A.S., Sutherland, M.T., Casey, B., Barch, D.M., Harms, M.P., et al., 2018. Image processing and analysis methods for the adolescent brain cognitive development study. biorxiv. Published online November 4, 457739

Haier RJ, Jung RE, Yeo RA, Head K, Alkire MT (2005) The neuroanatomy of general intelligence: sex matters. Neuroimage 25:320–327

Article  PubMed  Google Scholar 

Jernigan TL, Brown TT, Hagler DJ Jr, Akshoomoff N, Bartsch H, Newman E, Thompson WK, Bloss CS, Murray SS, Schork N et al (2016) The pediatric imaging, neurocognition, and genetics (ping) data repository. Neuroimage 124:1149–1154

Article  PubMed  Google Scholar 

Jones SE, Buchbinder BR, Aharon I (2000) Three-dimensional mapping of cortical thickness using laplace’s equation. Hum Brain Mapp 11:12–32

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karama S, Ad-Dab’bagh Y, Haier R, Deary I, Lyttelton O, Lepage C, Evans A (2009) Positive association between cognitive ability and cortical thickness in a representative us sample of healthy 6 to 18 year-olds. Intelligence 37:145–155

Article  Google Scholar 

Karama S, Colom R, Johnson W, Deary IJ, Haier R, Waber DP, Lepage C, Ganjavi H, Jung R, Evans AC et al (2011) Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18. Neuroimage 55:1443–1453

Article  PubMed  Google Scholar 

Kharabian Masouleh, S., Eickhoff, S., Hoffstaedter, F., Genon, S., 2019. Alzheimer’s disease neuroimaging i. empirical examination of the replicability of associations between brain structure and psychological variables. elife 8

Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab’bagh Y, MacDonald D, Lee JM, Kim SI, Evans AC (2005) Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27:210–221

Article  PubMed  Google Scholar 

Lavery MR, Acharya P, Sivo SA, Xu L (2019) Number of predictors and multicollinearity: What are their effects on error and bias in regression? Communications in Statistics-Simulation and Computation 48:27–38

Article  Google Scholar 

Leeuwenberg, A.M., van Smeden, M., Langendijk, J.A., van der Schaaf, A., Mauer, M.E., Moons, K.G., Reitsma, J.B., Schuit, E., 2021. Comparing methods addressing multi-collinearity when developing prediction models. arXiv preprint arXiv:2101.01603

Lewis JD, Evans AC, Tohka J, Group BDC et al (2018) T1 white/gray contrast as a predictor of chronological age, and an index of cognitive performance. Neuroimage 173:341–350

Article  PubMed  Google Scholar 

Li M, Jiang M, Zhang G, Liu Y, Zhou X (2022) Prediction of fluid intelligence from t1-w MRI images: A precise two-step deep learning framework. PLoS ONE 17:e0268707

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luders E, Narr KL, Thompson PM, Toga AW (2009) Neuroanatomical correlates of intelligence. Intelligence 37:156–163

Article  PubMed  PubMed Central  Google Scholar 

McDaniel MA (2005) Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence 33:337–346

Article  Google Scholar 

Menary K, Collins PF, Porter JN, Muetzel R, Olson EA, Kumar V, Steinbach M, Lim KO, Luciana M et al (2013) Associations between cortical thickness and general intelligence in children, adolescents and young adults. Intelligence 41:597–606

Article  PubMed  PubMed Central  Google Scholar 

Mihalik, A., Brudfors, M., Robu, M., Ferreira, F.S., Lin, H., Rau, A., Wu, T., Blumberg, S.B., Kanber, B., Tariq, M., et al., 2019. ABCD neurocognitive prediction challenge 2019: predicting individual fluid intelligence scores from structural MRI using probabilistic segmentation and kernel ridge regression, in: Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction, Springer. pp. 133–142

Narr KL, Woods RP, Thompson PM, Szeszko P, Robinson D, Dimtcheva T, Gurbani M, Toga AW, Bilder RM (2007) Relationships between iq and regional cortical gray matter thickness in healthy adults. Cereb Cortex 17:2163–2171

Article  PubMed  Google Scholar 

Nave G, Jung WH, Karlsson Linnér R, Kable JW, Koellinger PD (2019) Are bigger brains smarter? evidence from a large-scale preregistered study. Psychol Sci 30:43–54

Article  PubMed  Google Scholar 

Nooner KB, Colcombe S, Tobe R, Mennes M, Benedict M, Moreno A, Panek L, Brown S, Zavitz S, Li Q et al (2012) The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry. Front Neurosci 6:152

Article  PubMed  PubMed Central  Google Scholar 

Oxtoby, N.P., Ferreira, F.S., Mihalik, A., Wu, T., Brudfors, M., Lin, H., Rau, A., Blumberg, S.B., Robu, M., Zor, C., et al., 2019. ABCD neurocognitive prediction challenge 2019: Predicting individual residual fluid intelligence scores from cortical grey matter morphology, in: Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction, Springer. pp. 114–123

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al., 2011. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830

Pfefferbaum A, Kwon D, Brumback T, Thompson WK, Cummins K, Tapert SF, Brown SA, Colrain IM, Baker FC, Prouty D et al (2018) Altered brain developmental trajectories in adolescents after initiating drinking. Am J Psychiatry 175:370–380

Article  PubMed  Google Scholar 

Pietschnig J, Penke L, Wicherts JM, Zeiler M, Voracek M (2015) Meta-analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean? Neuroscience & Biobehavioral Reviews 57:411–432

Article  Google Scholar 

Pohl KM, Thompson WK, Adeli E, Linguraru MG (2019) Adolescent Brain Cognitive Development Neurocognitive Prediction: First Challenge, ABCD-NP 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings. volume 11791. Springer Nature

Pölsterl, S., Gutiérrez-Becker, B., Sarasua, I., Roy, A.G., Wachinger, C., 2019. Prediction of fluid intelligence from t1-weighted magnetic resonance images, in: Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction, Springer. pp. 35–46

Rebsamen, M., Rummel, C., Mürner-Lavanchy, I., Reyes, M., Wiest, R., McKinley, R., 2019. Surface-based brain morphometry for the prediction of fluid intelligence in the neurocognitive prediction challenge 2019, in: Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction, Springer. pp. 26–34

Rushton JP, Ankney CD (1996) Brain size and cognitive ability: Correlations with age, sex, social class, and race. Psychonomic Bulletin & Review 3:21–36

Article  CAS  Google Scholar 

Rushton JP, Ankney CD (2009) Whole brain size and general mental ability: a review. Int J Neurosci 119:692–732

Article  PubMed Central  Google Scholar 

Schnack HG, Van Haren NE, Brouwer RM, Evans A, Durston S, Boomsma DI, Kahn RS, Hulshoff Pol HE (2015) Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cereb Cortex 25:1608–1617

Article  PubMed  Google Scholar 

Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Evans A, Rapoport J, Giedd J (2006) Intellectual ability and cortical development in children and adolescents. Nature 440:676–679

Article  CAS  PubMed  Google Scholar 

Tohka J, Moradi E, Huttunen H (2016) Comparison of feature selection techniques in machine learning for anatomical brain MRI in dementia. Neuroinformatics 14:279–296

Article  PubMed  Google Scholar 

Valverde, J.M., Imani, V., Lewis, J.D., Tohka, J., 2019. Predicting intelligence based on cortical wm/gm contrast, cortical thickness and volumetry, in: Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction, Springer. pp. 57–65

Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, W.M.H., et al., 2013. The wu-minn human connectome project: an overview. Neuroimage 80, 62–79

Van Valen L (1974) Brain size and intelligence in man. Am J Phys Anthropol 40:417–423

Article  PubMed  Google Scholar 

Vang, Y.S., Cao, Y., Xie, X., 2019. A combined deep learning-gradient boosting machine framework for fluid intelligence prediction, in: Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction, Springer. pp. 1–8

Varoquaux G (2018) Cross-validation failure: Small sample sizes lead to large error bars. Neuroimage 180:68–77

Article  PubMed  Google Scholar 

Vernon, P.A., Wickett, J.C., Bazana, P.G., Stelmack, R.M., 2000. The neuropsychology and psychophysiology of human intelligence., in: Sternberg, R.J. (Ed.), Handbook of intelligence. Cambridge University Press, pp. 245–264

Wickett JC, Vernon PA, Lee DH (1994) In vivo brain size, head perimeter, and intelligence in a sample of healthy adult females. Personality Individ Differ 16:831–838

Article  Google Scholar 

留言 (0)

沒有登入
gif