IBCBML: interpreting breast cancer biomarker using machine learning

Ali HR, Rueda OM, Chin SF, et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biol. 2014;15(8):1–14.

Article  Google Scholar 

Rakha EA, Reis-Filho JS, Baehner F, et al. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 2010;12(4):1–12.

Article  Google Scholar 

Olsson N, Carlsson P, James P, et al. Grading breast cancer tissues using molecular portraits. Mol Cell Proteom. 2013;12(12):3612–23.

Article  Google Scholar 

Jayanthi VSA, Das AB, Saxena U. Grade-specific diagnostic and prognostic biomarkers in breast cancer. Genomics. 2020;112(1):388–96.

Article  Google Scholar 

Dai X, Li T, Bai Z, et al. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5(10):2929.

Google Scholar 

Amiri Souri E, Chenoweth A, Cheung A, Karagiannis SN, Tsoka S. Cancer Grade Model: a multi-gene machine learning-based risk classification for improving prognosis in breast cancer. British Journal of Cancer. 2021;125(5):748–58.

Article  Google Scholar 

Rakha EA, Pareja FG. New advances in molecular breast cancer pathology. In: Seminars in cancer biology, vol. 72. Academic Press; 2021. p. 102–13.

Google Scholar 

Jenkins S, Kachur ME, Rechache K, et al. Rare breast cancer subtypes. Curr Oncol Rep. 2021;23(5):1–14.

Article  Google Scholar 

Ang JC, Mirzal A, Haron H, et al. Supervised, unsupervised, and semi-supervised feature selection: a review on gene selection. IEEE/ACM Trans Comput Biol Bioinf. 2015;13(5):971–89.

Article  Google Scholar 

Lazar C, Taminau J, Meganck S, et al. A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans Comput Biol Bioinf. 2012;9(4):1106–19.

Article  Google Scholar 

Kumar CA, Sooraj MP, Ramakrishnan S. A comparative performance evaluation of supervised feature selection algorithms on microarray datasets. Procedia Comput Sci. 2017;115:209–17.

Article  Google Scholar 

Lamba M, Munjal G, Gigras Y. A hybrid gene selection model for molecular breast cancer classification using a deep neural network. Int J Appl Pattern Recognit. 2021;6(3):195–216.

Article  Google Scholar 

Lamba M, Munjal G, Gigras Y. Feature selection of micro-array expression data (FSM)-A review. Procedia Comput Sci. 2018;132:1619–25.

Article  Google Scholar 

Lamba M, Munjal G, Gigras Y. Computational studies on breast cancer analysis. J Stat Manage Syst. 2020;23(6):999–1009.

Google Scholar 

Dong YN, Zhao JJ, Jin J. Novel feature selection and classification of internet video traffic based on a hierarchical scheme. Comput Netw. 2017;119:102–11.

Article  Google Scholar 

Engstrøm MJ, Opdahl S, Hagen AI, et al. Molecular subtypes, histopathological grade and survival in a historic cohort of breast cancer patients. Breast Cancer Res Treat. 2013;140(3):463–73.

Article  Google Scholar 

Blows FM, Driver KE, Schmidt MK, et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 2010;7(5):e1000279.

Article  Google Scholar 

Leong ASY, Zhuang Z. The changing role of pathology in breast cancer diagnosis and treatment. Pathobiology. 2011;78(2):99–114.

Article  Google Scholar 

Chowdhury N. Histopathological and genomic grading provide complementary prognostic information in breast cancer: a study on publicly available datasets. Pathology Research International. 2011;2011:890938.

Article  Google Scholar 

Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8–17.

Article  Google Scholar 

Mihaylov I, Nisheva M, Vassilev D. Application of machine learning models for survival prognosis in breast cancer studies. Information. 2019;10(3):93.

Article  Google Scholar 

Bashiri A, Ghazisaeedi M, Safdari R, Shahmoradi L, Ehtesham H. Improving the prediction of survival in cancer patients by using machine learning techniques: experience of gene expression data: a narrative review. Iran J Public Health. 2017;46(2):165.

Google Scholar 

Usman M, Dikko HG, Bala S, Gulumbe SU. An application of Kaplan-Meier survival analysis using breast cancer data. Sub-Saharan Afr J Med. 2014;1(3):132.

Article  Google Scholar 

Dudley WN, Wickham R, Coombs N. An introduction to survival statistics: Kaplan-Meier analysis. J Adv Practitioner Oncol. 2016;7(1):91.

Google Scholar 

Holzinger A, Biemann C, Pattichis CS, Kell DB. What do we need to build explainable AI systems for the medical domain? 2017. arXiv preprint arXiv:1712.09923.

Molnar C. Interpretable machine learning. 2020. Lulu.com.

Molnar C, Casalicchio G, Bischl B. Interpretable machine learning–a brief history, state-of-the-art and challenges. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer; 2020. p. 417–31.

Google Scholar 

Searcy N, Shafto P. Learning biases for teaching boolean concepts. In 36th Annual Meeting of the Cognitive Science Society 2014 (Vol. 36, No. 36) p 1401–6.

Badillo S, Banfai B, Birzele F, et al. An introduction to machine learning. Clin Pharmacol Ther. 2020;107(4):871–85.

Article  Google Scholar 

Araújo T, Aresta G, Castro E, Rouco J, Aguiar P, Eloy C, Campilho A. Classification of breast cancer histology images using convolutional neural networks. PloS One. 2017;12(6):e0177544.

Article  Google Scholar 

Bardou D, Zhang K, Ahmad SM. Classification of breast cancer based on histology images using convolutional neural networks. Ieee Access. 2018;6:24680–93.

Article  Google Scholar 

Vo DM, Nguyen NQ, Lee SW. Classification of breast cancer histology images using incremental boosting convolution networks. Inf Sci. 2019;482:123–38.

Article  Google Scholar 

Saini M, Susan S. Deep transfer with minority data augmentation for imbalanced breast cancer dataset. Appl Soft Comput. 2020;97:106759.

Article  Google Scholar 

Toğaçar M, Özkurt KB, Ergen B, Cömert Z. BreastNet: a novel convolutional neural network model through histopathological images for the diagnosis of breast cancer. Physica A. 2020;545:123592.

Article  Google Scholar 

Krithiga R, Geetha P. Breast cancer detection, segmentation and classification on histopathology images analysis: a systematic review. Arch Comput Methods Eng. 2021;28:2607–19.

Article  Google Scholar 

Wang Y, Acs B, Robertson S, Liu B, Solorzano L, Wählby C, Rantalainen M. Improved breast cancer histological grading using deep learning. Ann Oncol. 2022;33(1):89–98.

Article  Google Scholar 

Lamba M, Munjal G, Gigras Y, Kumar M. Breast cancer prediction and categorization in the molecular era of histologic grade. Multimed Tools Appl. 2023;82(19):29629–48.

Article  Google Scholar 

Allaire J. RStudio: integrated development environment for R. Boston MA. 2012;770(394):165–71.

Google Scholar 

Ferreira AJ, Figueiredo MA. An unsupervised approach to feature discretization and selection. Pattern Recogn. 2012;45(9):3048–60.

Article  Google Scholar 

Srinivasan SM, Martin M, Tripathi A. ANN based data mining analysis of the Parkinson ’s disease. Int J Comput Appl. 2017;168(1):56–60.

Google Scholar 

Li J, Cheng K, Wang S, et al. Feature selection: a data perspective. ACM Comput Surv (CSUR). 2017;50(6):1–45.

Article  Google Scholar 

Chandrashekar G, Sahin F. A survey on feature selection methods. Comput Electr Eng. 2014;40(1):16–28.

Article  Google Scholar 

Dash CSK, Kumar Behera A, Dehuri S, Cho SB. Building a novel classifier based on teaching learning based optimization and radial basis function neural networks for non-imputed database with irrelevant features. Appl Comput Inform. 2022;18(1/2):151–62.

Article  Google Scholar 

Zhang T, Ye S, Zhang K, Tang J, Wen W, Fardad M, Wang Y. A Systematic DNN weight pruning framework using alternating direction method of multipliers. In: European Conference on Computer Vision. Cham: Springer International Publishing; 2018. p. 191–207.

Google Scholar 

Maslove DM, Podchiyska T, Lowe HJ. Discretization of continuous features in clinical datasets. J Am Med Inform Assoc. 2013;20(3):544–53.

Article  Google Scholar 

Han J, Pei J, Kamber M. Data mining: concepts and techniques. Elsevier. 2011.

Wu X., Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, Steinberg D, et al. Top 10 algorithms in data mining. Knowl Inf Syst. 2008;14(1):1–37.

Article  Google Scholar 

John GH, Langley P. Estimating continuous distributions in Bayesian classifiers. 2013. arXiv preprint arXiv:1302.4964.

Zhang H, Jiang L, Su J. Hidden Naive Bayes A A. 2005;1(2):3.

Google Scholar 

Jiang L, Zhang L, Li C, et al. A correlation-based feature weighting filter for naive Bayes. IEEE Trans Knowl Data Eng. 2018;31(2):201–13.

Article  Google Scholar 

Győrffy B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput Struct Biotechnol J. 2021;19:4101–9.

Article  Google Scholar 

Sun CC, Li SJ, Hu W, et al. Comprehensive analysis of the expression and prognosis for E2Fs in human breast cancer. Mol Ther. 2019;27(6):1153–65.

Article  Google Scholar 

Li H, Cao Y, Ma J, Luo L, Ma B. Expression and prognosis analysis of GINS subunits in human breast cancer. Medicine. 2021;100(11):e24827.

Article  Google Scholar 

Nieto-Jiménez C, Alcaraz-Sanabria A, Páez R, et al. DNA-damage related genes and clinical outcome in hormone receptor positive breast cancer. Oncotarget. 2017;8(38):62834.

Article  Google Scholar 

Hall M, Frank E, Holmes G, et al. The WEKA data mining software: an update. ACM SIGKDD Explor Newsl. 2009;11(1):10–8.

Article  Google Scholar 

Huang N, Lu G, Xu D. A permutation importance-based feature selection method for short-term electricity load forecasting using random forest. Energies. 2016;9(10):767.

Article  Google Scholar 

Marcílio-Jr WE, Eler D. From explanations to feature selection: assessing SHAP values as feature selection mechanism. In: Anais do XXXIII Conference on Graphics, Patterns and Images; 2020. p. 303–10.

留言 (0)

沒有登入
gif