Metabolic profiling of galectin-1 and galectin-3: a cross-sectional, multi-omics, association study

Sethi A, Sanam S, Alvala R, Alvala M. An updated patent review of galectin-1 and galectin-3 inhibitors and their potential therapeutic applications (2016-present). Expert Opin Ther Pat. 2021;31:709–21.

Article  CAS  PubMed  Google Scholar 

Fryk E, Silva VRR, Jansson PA. Galectin-1 in obesity and type 2 diabetes. Metabolites. 2022;12:1–21.

Article  Google Scholar 

Marino KV, Cagnoni AJ, Croci DO, Rabinovich GA. Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov. 2023;22:295–316.

Article  CAS  PubMed  Google Scholar 

Brinchmann MF, Patel DM, Iversen MH. The role of galectins as modulators of metabolism and inflammation. Mediators Inflamm. 2018;2018:9186940.

Article  PubMed  PubMed Central  Google Scholar 

Liu FT. Regulatory roles of galectins in the immune response. Int Arch Allergy Immunol. 2005;136:385–400.

Article  CAS  PubMed  Google Scholar 

Khalaji A, Amirkhani N, Sharifkashani S, Behnoush AH. Role of galectin-3 as a biomarker in obstructive sleep apnea: a systematic review and meta-analysis. Sleep Breath. 2023;27:2273–82.

Article  PubMed  Google Scholar 

Guo Y, Li L, Hu S. Circulating galectin-3 levels and diabetic nephropathy: a systematic review and meta-analysis. BMC Nephrol. 2023;24:163.

Article  PubMed  PubMed Central  Google Scholar 

Imran TF, Shin HJ, Mathenge N, Wang F, Kim B, Joseph J, et al. Meta-analysis of the usefulness of plasma galectin-3 to predict the risk of mortality in patients with heart failure and in the general population. Am J Cardiol. 2017;119:57–64.

Article  CAS  PubMed  Google Scholar 

Deng Y, Jin H, Ning J, Cui D, Zhang M, Yang H. Elevated galectin-3 levels detected in women with hyperglycemia during early and mid-pregnancy antagonizes high glucose-induced trophoblast cells apoptosis via galectin-3/foxc1 pathway. Mol Med. 2023;29:115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li P, Liu S, Lu M, Bandyopadhyay G, Oh D, Imamura T, et al. Hematopoietic-derived galectin-3 causes cellular and systemic insulin resistance. Cell. 2016;167:973–84.e12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu H, Yang F, Zhong W, Jiang X, Zhang F, Ji X, et al. Secretory galectin-3 promotes hepatic steatosis via regulation of the PPARgamma/CD36 signaling pathway. Cell Signal. 2021;84:110043.

Article  CAS  PubMed  Google Scholar 

Iacobini C, Menini S, Ricci C, Blasetti Fantauzzi C, Scipioni A, Salvi L, et al. Galectin-3 ablation protects mice from diet-induced NASH: a major scavenging role for galectin-3 in liver. J Hepatol. 2011;54:975–83.

Article  CAS  PubMed  Google Scholar 

Fryk E, Strindberg L, Lundqvist A, Sandstedt M, Bergfeldt L, Mattsson Hulten L, et al. Galectin-1 is inversely associated with type 2 diabetes independently of obesity—a SCAPIS pilot study. Metab Open. 2019;4:100017.

Article  Google Scholar 

Fryk E, Sundelin JP, Strindberg L, Pereira MJ, Federici M, Marx N, et al. Microdialysis and proteomics of subcutaneous interstitial fluid reveals increased galectin-1 in type 2 diabetes patients. Metab Clin Exp. 2016;65:998–1006.

Article  CAS  PubMed  Google Scholar 

Drake I, Fryk E, Strindberg L, Lundqvist A, Rosengren AH, Groop L, et al. The role of circulating galectin-1 in type 2 diabetes and chronic kidney disease: evidence from cross-sectional, longitudinal and Mendelian randomisation analyses. Diabetologia. 2022;65:128–39.

Article  CAS  PubMed  Google Scholar 

Baek JH, Kim DH, Lee J, Kim SJ, Chun KH. Galectin-1 accelerates high-fat diet-induced obesity by activation of peroxisome proliferator-activated receptor gamma (PPARgamma) in mice. Cell Death Dis. 2021;12:66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mukherjee R, Kim SW, Park T, Choi MS, Yun JW. Targeted inhibition of galectin 1 by thiodigalactoside dramatically reduces body weight gain in diet-induced obese rats. Int J Obes. 2015;39:1349–58.

Article  CAS  Google Scholar 

Mansour AA, Krautter F, Zhi Z, Iqbal AJ, Recio C. The interplay of galectins-1, -3, and -9 in the immune-inflammatory response underlying cardiovascular and metabolic disease. Cardiovasc Diabetol. 2022;21:253.

Article  PubMed  PubMed Central  Google Scholar 

Lind L. Relationships between three different tests to evaluate endothelium-dependent vasodilation and cardiovascular risk in a middle-aged sample. J Hypertens. 2013;31:1570–4.

Article  CAS  PubMed  Google Scholar 

Lind L, Salihovic S, Sundstrom J, Elmstahl S, Hammar U, Dekkers K, et al. Metabolic profiling of obesity with and without the metabolic syndrome: a multisample evaluation. J Clin Endocrinol Metab. 2022;107:1337–45.

Article  PubMed  Google Scholar 

Lind L, Sundstrom J, Elmstahl S, Dekkers KF, Smith JG, Engstrom G, et al. The metabolomic profile associated with clustering of cardiovascular risk factors—a multi-sample evaluation. PLoS ONE. 2022;17:e0274701.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

Article  CAS  PubMed  Google Scholar 

Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22:1462–70.

Article  CAS  PubMed  Google Scholar 

da Silva A, Caldas APS, Rocha D, Bressan J. Triglyceride-glucose index predicts independently type 2 diabetes mellitus risk: a systematic review and meta-analysis of cohort studies. Prim Care Diabetes. 2020;14:584–93.

Article  PubMed  Google Scholar 

Khalaji A, Behnoush AH, Khanmohammadi S, Ghanbari Mardasi K, Sharifkashani S, Sahebkar A, et al. Triglyceride-glucose index and heart failure: a systematic review and meta-analysis. Cardiovasc Diabetol. 2023;22:244.

Article  PubMed  PubMed Central  Google Scholar 

Tahapary DL, Pratisthita LB, Fitri NA, Marcella C, Wafa S, Kurniawan F, et al. Challenges in the diagnosis of insulin resistance: focusing on the role of HOMA-IR and tryglyceride/glucose index. Diabetes Metab Syndr. 2022;16:102581.

Article  CAS  PubMed  Google Scholar 

Lundberg M, Eriksson A, Tran B, Assarsson E, Fredriksson S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 2011;39:e102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toombs RJ, Ducher G, Shepherd JA, De Souza MJ. The impact of recent technological advances on the trueness and precision of DXA to assess body composition. Obesity. 2012;20:30–9.

Article  PubMed  Google Scholar 

Strand R, Kullberg J, Ahlstrom H, Lind L. Relationships between plasma levels and six proinflammatory interleukins and body composition using a new magnetic resonance imaging voxel-based technique. Cytokine X. 2021;3:100050.

Article  CAS  PubMed  Google Scholar 

Lind L, Strand R, Michaelsson K, Ahlstrom H, Kullberg J. Voxel-wise study of cohort associations in whole-body MRI: application in metabolic syndrome and its components. Radiology. 2020;294:559–67.

Article  PubMed  Google Scholar 

Langner T, Strand R, Ahlstrom H, Kullberg J. Large-scale biometry with interpretable neural network regression on UK Biobank body MRI. Sci Rep. 2020;10:17752.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jelenkovic A, Bogl LH, Rose RJ, Kangas AJ, Soininen P, Ala-Korpela M, et al. Association between serum fatty acids and lipoprotein subclass profile in healthy young adults: exploring common genetic and environmental factors. Atherosclerosis. 2014;233:394–402.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kettunen J, Tukiainen T, Sarin AP, Ortega-Alonso A, Tikkanen E, Lyytikainen LP, et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat Genet. 2012;44:269–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soininen P, Kangas AJ, Wurtz P, Tukiainen T, Tynkkynen T, Laatikainen R, et al. High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. Analyst. 2009;134:1781–5.

Article  CAS  PubMed  Google Scholar 

Assarsson E, Lundberg M, Holmquist G, Bjorkesten J, Thorsen SB, Ekman D, et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE. 2014;9:e95192.

Article  PubMed  PubMed Central  Google Scholar 

Gillespie M, Jassal B, Stephan R, Milacic M, Rothfels K, Senff-Ribeiro A, et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022;50:D687–92.

Article  CAS 

留言 (0)

沒有登入
gif