Experimental Study on Bio-cementation of Red Mud Through Microbially Induced Calcite Precipitation

Kehagia F (2010) A successful pilot project demonstrating the re-use potential of bauxite residue in embankment construction. Resour Conserv Recycl 54:417–421

Article  Google Scholar 

Sun C, Chen J, Tian K, Peng D, Liao X, Wu X (2019) Geochemical characteristics and toxic elements in alumina refining wastes and leachates from management facilities. Int J Environ Res Public Health 16(7):1297. https://doi.org/10.3390/ijerph16071297

Article  Google Scholar 

Bayer Process: manufacturing of alumina making of alumina. https://www.worldofchemicals.com/591/chemistry-articles/manufacturing-of-alumina-through-bayer-process.html. Accessed 24 Jul 2023

Evans K (2016) The history, challenges, and new developments in the management and use of bauxite residue. J Sustain Metall 2:316–331. https://doi.org/10.1007/s40831-016-0060-x

Article  Google Scholar 

Banvoelgyi G, Huan TM (2010) De-watering disposal and utilization of red mud: state of the art and emerging technologies. In: Proceedings of XVIII international symposium of ICSOBA Zhengzhou, pp 431–443

Monthly Summary on Minerals and Non-Ferrous Metals (2023) Government of India. https://mines.gov.in/admin/storage/ckeditor/_for_the_Month_of_May_2023_1689232034.pdf

Reddy NG, Rao BH (2018) Characterization of settled particles of the red mud waste exposed to different aqueous environmental conditions. Indian Geotech J 48:405–419. https://doi.org/10.1007/s40098-018-0300-z

Article  Google Scholar 

Vangelatos I, Angelopoulos GN, Boufounos D (2009) Utilization of ferro alumina as raw material in the production of ordinary portland cement. J Hazard Mater 168:473–478. https://doi.org/10.1016/J.JHAZMAT.2009.02.049

Article  Google Scholar 

Reddy P, Reddy N et al (2021) Properties and assessment of applications of red mud (bauxite residue): current status and research needs. Waste Biomass Valoriz 12(3):1185–1217. https://doi.org/10.1007/s12649-020-01089-z

Article  Google Scholar 

DeJong JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36:197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029

Article  Google Scholar 

Ivanov V, Chu J (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci Biotechnol 7:139–153. https://doi.org/10.1007/s11157-007-9126-3

Article  Google Scholar 

Worrell E, Martin L, Martin N, Hendriks C, Meida LO (2001) Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ 26:303–329. https://doi.org/10.1146/annurev.energy.26.1.303

Article  Google Scholar 

Ikeagwuani CC, Nwonu DC (2019) Emerging trends in expansive soil stabilisation: a review. J Rock Mech Geotech Eng 11:423–440. https://doi.org/10.1016/J.JRMGE.2018.08.013

Article  Google Scholar 

Karol RH (2003) Chemical grouting and soil stabilization revised and expanded (3rd ed.). CRC Press, Boca Raton. https://doi.org/10.1201/9780203911815

Book  Google Scholar 

Liu L, Zhao M (2016) Review of ground improvement technical and its application in China. Chin Civil Eng J 49:96–115

Google Scholar 

Safavizadeh S, Montoya BM, Gabr MA (2019) Microbial induced calcium carbonate precipitation in coal ash. Géotechnique 69:727–740. https://doi.org/10.1680/jgeot.18.P.062

Article  Google Scholar 

Choi SG, Chang I, Lee M, Lee JH, Han JT, Kwon TH (2020) Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers. Constr Build Mater 246:118415. https://doi.org/10.1016/j.conbuildmat.2020.118415

Article  Google Scholar 

Xiao Y, Stuedlein AW, Ran J et al (2019) Effect of particle shape on strength and stiffness of biocemented glass beads. J Geotech Geoenviron Eng 145:06019016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002165

Article  Google Scholar 

Mahawish A, Bouazza A, Gates WP (2018) Improvement of coarse sand engineering properties by microbially induced calcite precipitation. Geomicrobiol J 35:887–897. https://doi.org/10.1080/01490451.2018.1488019

Article  Google Scholar 

Sharma M, Satyam N, Reddy KR (2021) Rock-like behavior of biocemented sand treated under non-sterile environment and various treatment conditions. J Rock Mech Geotech Eng 13:705–716. https://doi.org/10.1016/j.jrmge.2020.11.006

Article  Google Scholar 

Lee LM, Ng WS, Tan CK, Hii SL (2012) Bio-mediated soil improvement under various concentrations of cementation reagent. Appl Mech Mater 204–208:326–329. https://doi.org/10.4028/www.scientific.net/AMM.204-208.326

Article  Google Scholar 

Consoli NC, Cruz RC, Floss MF, Festugato L (2010) Parameters controlling tensile and compressive strength of artificially cemented sand. J Geotech Geoenviron Eng 136:759–763. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000278

Article  Google Scholar 

Wang YH, Leung SC (2008) Characterization of cemented sand by experimental and numerical investigations. J Geotech Geoenviron Eng 134:992–1004. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:7(992)

Article  Google Scholar 

Terzis D, Laloui L (2019) A decade of progress and turning points in the understanding of bio-improved soils: a review. Geomech Energy Environ 19:100116. https://doi.org/10.1016/j.gete.2019.03.001

Article  Google Scholar 

ASTM D698 (2012) Standard test methods for laboratory compaction characteristics of soil using standard effort. ASTM D698. ASTM International, West Conshohocken

ASTM D854 (2014) Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854. ASTM International, West Conshohocken

ASTM D4972 (2019) Standard test methods for pH of soils. ASTM D4972. ASTM International, West Conshohocken

ASTM D7928 (2021) Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM D7928. ASTM International, West Conshohocken

ASTM D5856 (2015) Standard test method for measurement of hydraulic conductivity of porous material using a rigid-wall, compaction-mold permeameters. ASTM D5856. ASTM International, West Conshohocken

Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750. https://doi.org/10.1128/MMBR.63.4.735-750.1999

Article  Google Scholar 

Sun X, Miao L, Tong T, Wang C (2018) Improvement of microbial-induced calcium carbonate precipitation technology for sand solidification. J Mater Civil Eng 30:04018301. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002507

Article  Google Scholar 

Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31:1563–1571. https://doi.org/10.1016/S0038-0717(99)00082-6

Article  Google Scholar 

Tiwari N, Satyam N, Sharma M (2021) Micro-mechanical performance evaluation of expansive soil biotreated with indigenous bacteria using MICP method. Sci Rep 11:10324. https://doi.org/10.1038/s41598-021-89687-2

Article  Google Scholar 

Xiao JZ, Wei YQ, Cai H et al (2020) Microbial-induced carbonate precipitation for strengthening soft clay. Adv Mater Sci Eng 2020:1–11. https://doi.org/10.1155/2020/8140724

Article  Google Scholar 

Teng F, Ouedraogo C, Sie YC (2020) Strength improvement of a silty clay with microbiologically induced process and coir fiber. J Geo Eng 15:79–88. https://doi.org/10.6310/JOG.202006_15(2).2

Article  Google Scholar 

Kc M, Stout R, Mitchell R (1971) Mechanism of the initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 68:337–348. https://doi.org/10.1099/00221287-68-3-337

Article  Google Scholar 

Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids Surf B Biointerfaces 14:105–119. https://doi.org/10.1016/S0927-7765(99)00029-6

Article  Google Scholar 

Chen L, Fortier D, McKenzie JM, Sliger M (2020) Impact of heat advection on the thermal regime of roads built on permafrost. Hydrol Process 34(7):1647–1664. https://doi.org/10.1002/hyp.13688

Article  Google Scholar 

Wang T, Yan LE (2022) A heat-flux upper boundary for modeling temperature of soils under an embankment in permafrost region. Sci Rep 12(1):13295. https://doi.org/10.1038/s41598-022-17529-w

Article  Google Scholar 

Zhang H, Du H, Sun S, Wang Y, Wang T, Li L (2023) A symmetrical exponential model of soil temperature in temperate steppe regions of China. Open Geosciences 15(1):20220523. https://doi.org/10.1515/geo-2022-0523

Article  Google Scholar 

ASTM D2166 (2006) Standard test method for unconfined compressive strength of cohesive soil D2166–06. ASTM International, West Conshohocken, PA

ASTM D4767 (2020) Standard test method for consolidated undrained triaxial compression test for cohesive soils D4767–11. ASTM International, West Conshohocken, PA

Muhammad I, Uchimura T (2015) Helical filter paper technique for uniform distribution of injected moisture in unsaturated triaxial specimens. Soils Found 55(4):749–760. https://doi.org/10.1016/j.sandf.2015.06.008

Article  Google Scholar 

Choi S-G, Park S-S, Wu S, Chu J (2017) Methods for calcium carbonate content measurement of biocemented soils. J Mater Civil Eng 29:06017015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002064

Article  Google Scholar 

Tang C-S, Yin L, Jiang N et al (2020) Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environ Earth Sci 79:94. https://doi.org/10.1007/s12665-020-8840-9

Article  Google Scholar 

Biogrout: ground improvement by microbially induced carbonate precipitation. Dissertation, Delft University of Technology.

Fu T, Saracho AC, Haigh SK (2023) Microbially induced carbonate precipitation (MICP) for soil strengthening: a comprehensive review. Bio geotechnics 1:100002. https://doi.org/10.1016/j.bgtech.2023.100002

Article  Google Scholar 

Gowthaman S, Nakashima K, Kawasaki S (2020) Freeze-thaw durability and shear responses of cemented slope soil treated by microbial induced carbonate precipitation. Soils Found 60:840–855. https://doi.org/10.1016/j.sandf.2020.05.012

Article  Google Scholar 

Lin H, Suleiman MT, Brown DG, Kavazanjian E (2016) Mechanical behavior of sands treated by microbially induced carbonate precipitation. J Geotech Geoenviron Eng 142:04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383

Article  Google Scholar 

Montoya BM, DeJong JT (2015) Stress–strain behavior of sands cemented by microbially induced calcite precipitation. J Geotech Geoenviron Eng 141(6):04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302

Article  Google Scholar 

Zamani A, Montoya BM (2018) Undrained monotonic shear response of micp-treated silty sands. J Geotech Geoenviron Eng 144:04018029. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001861

Article  Google Scholar 

Mitchell JK, Soga K (2005) Fundamentals of soil behaviour. Wiley, New York

Google Scholar 

Kim G, Kim J, Youn H (2018) Effect of temperature, pH, and reaction duration on microbially induced calcite precipitation. Appl Sci 8:1277. https://doi.org/10.3390/app8081277

Article  Google Scholar 

Cui MJ, Zheng JJ, Zhang RJ, Lai HJ, Zhang J (2017) Influence of cementation level on the strength behaviour of bio-cemented sand. Acta Geotech 12(5):971–986. https://doi.org/10.1007/s11440-017-0574-9

Article  Google

留言 (0)

沒有登入
gif