Splicing regulation through biomolecular condensates and membraneless organelles

Berget, S. M., Moore, C. & Sharp, P. A. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc. Natl Acad. Sci. USA 74, 3171–3175 (1977).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chow, L. T., Gelinas, R. E., Broker, T. R. & Roberts, R. J. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12, 1–8 (1977).

Article  CAS  PubMed  Google Scholar 

Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

Article  CAS  PubMed  Google Scholar 

Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tilgner, H. et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 22, 1616–1625 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vargas, D. Y. et al. Single-molecule imaging of transcriptionally coupled and uncoupled splicing. Cell 147, 1054–1065 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fiszbein, A. et al. Alternative slicing of G9a regulates neuronal differentiation. Cell Rep. 14, 2797–2808 (2016).

Article  CAS  PubMed  Google Scholar 

Kornblihtt, A. R. et al. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat. Rev. Mol. Cell Biol. 14, 153–165 (2013).

Article  CAS  PubMed  Google Scholar 

Luco, R. F., Allo, M., Schor, I. E., Kornblihtt, A. R. & Misteli, T. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16–26 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neugebauer, K. M. On the importance of being co-transcriptional. J. Cell Sci. 115, 3865–3871 (2002).

Article  CAS  PubMed  Google Scholar 

Ip, J. Y. et al. Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. Genome Res. 21, 390–401 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perales, R. & Bentley, D. “Cotranscriptionality”: the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 36, 178–191 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lyon, A. S., Peeples, W. B. & Rosen, M. K. A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. 22, 215–235 (2021).

Article  CAS  PubMed  Google Scholar 

Hyman, A. A., Weber, C. A. & Julicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

Article  CAS  PubMed  Google Scholar 

Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

Article  PubMed  Google Scholar 

Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bergeron-Sandoval, L. P., Safaee, N. & Michnick, S. W. Mechanisms and consequences of macromolecular phase separation. Cell 165, 1067–1079 (2016).

Article  CAS  PubMed  Google Scholar 

Choi, J. M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alberti, S. & Dormann, D. Liquid–liquid phase separation in disease. Annu. Rev. Genet. 53, 171–194 (2019).

Article  CAS  PubMed  Google Scholar 

Snead, W. T. & Gladfelter, A. S. The control centers of biomolecular phase separation: how membrane surfaces, PTMs, and active processes regulate condensation. Mol. Cell 76, 295–305 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).

Article  CAS  PubMed  Google Scholar 

Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uversky, V. N. Protein intrinsic disorder-based liquid–liquid phase transitions in biological systems: complex coacervates and membrane-less organelles. Adv. Colloid Interface Sci. 239, 97–114 (2017).

Article  CAS  PubMed  Google Scholar 

Mitrea, D. M. & Kriwacki, R. W. Phase separation in biology; functional organization of a higher order. Cell Commun. Signal. 14, 1 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

Article  CAS  PubMed  Google Scholar 

Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woodruff, J. B., Hyman, A. A. & Boke, E. Organization and function of non-dynamic biomolecular condensates. Trends Biochem. Sci. 43, 81–94 (2018).

Article  CAS  PubMed  Google Scholar 

Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramaswami, M., Taylor, J. P. & Parker, R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154, 727–736 (2013).

Article  CAS  PubMed  Google Scholar 

Kim, H. J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes. Dev. 33, 1619–1634 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, W. & Jiang, H. Nuclear protein condensates and their properties in regulation of gene expression. J. Mol. Biol. 434, 167151 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Sabari, B. R., Dall’Agnese, A. & Young, R. A. Biomolecular condensates in the nucleus. Trends Biochem. Sci. 45, 961–977 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shrinivas, K. et al. Enhancer features that drive formation of transcriptional condensates. Mol. Cell 75, 549–561.e7 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhat, P. et al. 3D genome organization around nuclear speckles drives mRNA splicing efficiency. Preprint at bioRxiv https://doi.org/10.1101/2023.01.04.522632 (2023).

Li, C. H. et al. MeCP2 links heterochromatin condensates and neurodevelopmental disease. Nature 586, 440–444 (2020).

留言 (0)

沒有登入
gif