Evaluation of a proteomic signature coupled with the kidney failure risk equation in predicting end stage kidney disease in a chronic kidney disease cohort

Hounkpatin HO, Harris S, Fraser SDS, Day J, Mindell JS, Taal MW, et al. Prevalence of chronic kidney disease in adults in England: comparison of nationally representative cross-sectional surveys from 2003 to 2016. BMJ Open. 2020;10(8): e038423.

Article  PubMed  PubMed Central  Google Scholar 

de Vries EF, Rabelink TJ, van den Hout WB. modelling the cost-effectiveness of delaying end-stage renal disease. Nephron. 2016;133(2):89–97.

Article  PubMed  Google Scholar 

Kerr M, Bray B, Medcalf J, O’Donoghue DJ, Matthews B. Estimating the financial cost of chronic kidney disease to the NHS in England. Nephrol Dial Transplant. 2012;27(Suppl 3):73–80.

Article  Google Scholar 

Murtagh FE, Addington-Hall J, Higginson IJ. The prevalence of symptoms in end-stage renal disease: a systematic review. Adv Chronic Kidney Dis. 2007;14(1):82–99.

Article  PubMed  Google Scholar 

Ali I, Kalra PA. A validation study of the 4-variable and 8-variable kidney failure risk equation in transplant recipients in the United Kingdom. BMC Nephrol. 2021;22(1):57.

Article  PubMed  PubMed Central  Google Scholar 

Akbari S, Knoll G, White CA, Kumar T, Fairhead T, Akbari A. Accuracy of kidney failure risk equation in transplant recipients. Kidney Int Rep. 2019;4(9):1334–7.

Article  PubMed  PubMed Central  Google Scholar 

Tangri N, Grams ME, Levey AS, Coresh J, Appel LJ, Astor BC, et al. Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis. JAMA. 2016;315(2):164–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramirez Medina CR, Ali I, Baricevic-Jones I, Odudu A, Saleem MA, Whetton AD, et al. Proteomic signature associated with chronic kidney disease (CKD) progression identified by data-independent acquisition mass spectrometry. Clin Proteomics. 2023;20(1):19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ali I, Ibrahim ST, Chinnadurai R, Green D, Taal M, Whetton TD, et al. A paradigm to discover biomarkers associated with chronic kidney disease progression. Biomark Insights. 2020;15:1177271920976146.

Article  PubMed  PubMed Central  Google Scholar 

Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.

Article  PubMed  PubMed Central  Google Scholar 

Sumida K NG, Grams ME, Sang Y, Ballew SH, Coresh J, et al. Conversion of urine protein–creatinine ratio or urine dipstick protein to urine albumin–creatinine ratio for use in chronic kidney disease screening and prognosis: Johns Hopkins University. 2015. https://ckdpcrisk.org/pcr2acr/.

Ali I, Donne RL, Kalra PA. A validation study of the kidney failure risk equation in advanced chronic kidney disease according to disease aetiology with evaluation of discrimination, calibration and clinical utility. BMC Nephrol. 2021;22(1):194.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Major RW, Shepherd D, Medcalf JF, Xu G, Gray LJ, Brunskill NJ. The kidney failure risk equation for prediction of end stage renal disease in UK primary care: an external validation and clinical impact projection cohort study. PLoS Med. 2019;16(11): e1002955.

Article  PubMed  PubMed Central  Google Scholar 

Geary B, Walker MJ, Snow JT, Lee DCH, Pernemalm M, Maleki-Dizaji S, et al. Identification of a biomarker panel for early detection of lung cancer patients. J Proteome Res. 2019;18(9):3369–82.

Article  CAS  PubMed  Google Scholar 

Ortea I, Ruiz-Sánchez I, Cañete R, Caballero-Villarraso J, Cañete MD. Identification of candidate serum biomarkers of childhood-onset growth hormone deficiency using SWATH-MS and feature selection. J Proteomics. 2018;175:105–13.

Article  CAS  PubMed  Google Scholar 

Salie MT, Yang J, Ramirez Medina CR, Zuhlke LJ, Chishala C, Ntsekhe M, et al. Data-independent acquisition mass spectrometry in severe rheumatic heart disease (RHD) identifies a proteomic signature showing ongoing inflammation and effectively classifying RHD cases. Clin Proteomics. 2022;19(1):7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Acharjee A, Larkman J, Xu Y, Cardoso VR, Gkoutos GV. A random forest based biomarker discovery and power analysis framework for diagnostics research. BMC Med Genomics. 2020;13(1):178.

Article  PubMed  PubMed Central  Google Scholar 

Kursa MB, Rudnicki WR. Feature selection with the boruta package. J Stat Softw. 2010;36(11):1–13.

Article  Google Scholar 

Polo TCF, Miot HA. Use of ROC curves in clinical and experimental studies. J Vasc Bras. 2020;19: e20200186.

Article  PubMed  PubMed Central  Google Scholar 

Aleshin AE, Schraufstatter IU, Stec B, Bankston LA, Liddington RC, DiScipio RG. Structure of complement C6 suggests a mechanism for initiation and unidirectional, sequential assembly of membrane attack complex (MAC). J Biol Chem. 2012;287(13):10210–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thurman JM. Complement in kidney disease: core curriculum 2015. Am J Kidney Dis. 2015;65(1):156–68.

Article  PubMed  Google Scholar 

Berger SP, Roos A, Daha MR. Complement and the kidney: what the nephrologist needs to know in 2006? Nephrol Dial Transplant. 2005;20(12):2613–9.

Article  PubMed  Google Scholar 

Koopman JJE, van Essen MF, Rennke HG, de Vries APJ, van Kooten C. Deposition of the membrane attack complex in healthy and diseased human kidneys. Front Immunol. 2020;11: 599974.

Article  CAS  PubMed  Google Scholar 

Rauscher CK, Fajt ML, Bryk J, Petrov AA. Clinical implications of C6 complement component deficiency. Allergy Asthma Proc. 2020;41(5):386–8.

Article  PubMed  Google Scholar 

Grumach AS, Kirschfink M. Complement Deficiencies. In: Rezaei N, editor. Encyclopedia of infection and immunity. Oxford: Elsevier; 2022. p. 556–63.

Chapter  Google Scholar 

Hsieh LT, Nastase MV, Zeng-Brouwers J, Iozzo RV, Schaefer L. Soluble biglycan as a biomarker of inflammatory renal diseases. Int J Biochem Cell Biol. 2014;54:223–35.

Article  CAS  PubMed  Google Scholar 

Singh S, Wu T, Xie C, Vanarsa K, Han J, Mahajan T, et al. Urine VCAM-1 as a marker of renal pathology activity index in lupus nephritis. Arthritis Res Ther. 2012;14(4):R164.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeruschke S, Büscher AK, Oh J, Saleem MA, Hoyer PF, Weber S, et al. Protective effects of the mTOR inhibitor everolimus on cytoskeletal injury in human podocytes are mediated by RhoA signaling. PLoS ONE. 2013;8(2): e55980.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schiffer M, Teng B, Gu C, Shchedrina VA, Kasaikina M, Pham VA, et al. Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models. Nat Med. 2015;21(6):601–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reiser J, Sever S. Podocyte biology and pathogenesis of kidney disease. Annu Rev Med. 2013;64:357–66.

Article  CAS  PubMed  Google Scholar 

Ahmadian E, Eftekhari A, Atakishizada S, Valiyeva M, Ardalan M, Khalilov R, et al. Podocytopathy: the role of actin cytoskeleton. Biomed Pharmacother. 2022;156: 113920.

Article  CAS  PubMed  Google Scholar 

Solanki AK, Srivastava P, Rahman B, Lipschutz JH, Nihalani D, Arif E. The use of high-throughput transcriptomics to identify pathways with therapeutic significance in podocytes. Int J Mol Sci. 2019;21(1):274.

Article  PubMed  PubMed Central  Google Scholar 

Mukherjee K, Gu C, Collins A, Mettlen M, Samelko B, Altintas MM, et al. Simultaneous stabilization of actin cytoskeleton in multiple nephron-specific cells protects the kidney from diverse injury. Nat Commun. 2022;13(1):2422.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steichen C, Hervé C, Hauet T, Bourmeyster N. Rho GTPases in kidney physiology and diseases. Small GTPases. 2022;13(1):141–61.

Article  CAS  PubMed  Google Scholar 

Babelova A, Jansen F, Sander K, Löhn M, Schäfer L, Fork C, et al. Activation of Rac-1 and RhoA contributes to podocyte injury in chronic kidney disease. PLoS ONE. 2013;8(11): e80328.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou J. The kidney tight junction (review). Int J Mol Med. 2014;34(6):1451–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee DB, Huang E, Ward HJ. Tight junction biology and kidney dysfunction. Am J Physiol Renal Physiol. 2006;290(1):F20-34.

Article 

留言 (0)

沒有登入
gif