Static Stretch Training versus Foam Rolling Training Effects on Range of Motion: A Systematic Review and Meta-Analysis

Nakamura M, Ikezoe T, Takeno Y, Ichihashi N. Effects of a 4-week static stretch training program on passive stiffness of human gastrocnemius muscle-tendon unit in vivo. Eur J Appl Physiol. 2012;112:2749–55.

Article  PubMed  Google Scholar 

Nakamura M, Yahata K, Sato S, Kiyono R, Yoshida R, Fukaya T, et al. Training and detraining effects following a static stretching program on medial gastrocnemius passive properties. Front Physiol. 2021;12: 656579.

Article  PubMed  PubMed Central  Google Scholar 

Panidi I, Bogdanis GC, Terzis G, Donti A, Konrad A, Gaspari V, et al. Muscle architectural and functional adaptations following 12-weeks of stretching in adolescent female athletes. Front Physiol. 2021;12: 701338.

Article  PubMed  PubMed Central  Google Scholar 

Longo S, Cè E, Bisconti AV, Rampichini S, Doria C, Borrelli M, et al. The effects of 12 weeks of static stretch training on the functional, mechanical, and architectural characteristics of the triceps surae muscle–tendon complex. Eur J Appl Physiol. 2021;121:1743–58.

Article  PubMed  PubMed Central  Google Scholar 

Moltubakk MM, Villars FO, Magulas MM, Magnusson SP, Seynnes OR, Bojsen-Møller J. Altered triceps surae muscle-tendon unit properties after 6 months of static stretching. Med Sci Sports Exerc. 2021;53:1975–86.

Article  PubMed  Google Scholar 

Nakamura M, Yoshida R, Sato S, Yahata K, Murakami Y, Kasahara K, et al. Comparison between high- and low-intensity static stretching training program on active and passive properties of plantar flexors. Front Physiol. 2021;12:2287.

Article  Google Scholar 

Konrad A, Alizadeh S, Daneshjoo A, Anvar SH, Graham A, Zahiri A, et al. Chronic effects of stretching on range of motion with consideration of potential moderating variables: a systematic review with meta-analysis. J Sport Health Sci. 2024;13(2):186–94.

Article  PubMed  Google Scholar 

Alizadeh S, Daneshjoo A, Zahiri A, Anvar SH, Goudini R, Hicks JP, et al. Resistance training induces improvements in range of motion: a systematic review and meta-analysis. Sports Med. 2023;53(3):707–22.

Article  PubMed  PubMed Central  Google Scholar 

Konrad A, Nakamura M, Tilp M, Donti O, Behm DG, Konrad CA. Foam rolling training effects on range of motion: a systematic review and meta-analysis. Sports Med. 2022;52(10):2523–35.

Article  PubMed  PubMed Central  Google Scholar 

Afonso J, Ramirez-Campillo R, Moscão J, Rocha T, Zacca R, Martins A, et al. Strength training versus stretching for improving range of motion: a systematic review and meta-analysis. Healthcare (Basel). 2021;9:427.

Article  PubMed  Google Scholar 

Konrad A, Nakamura M, Tilp M, Donti O, Behm DG. Foam rolling training effects on range of motion: a systematic review and meta-analysis. Sports Med. 2022;52:2523–35.

Article  PubMed  PubMed Central  Google Scholar 

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. PLoS Med. 2009;6: e1000097.

Article  PubMed  PubMed Central  Google Scholar 

Freitas SR, Mendes B, Le Sant G, Andrade RJ, Nordez A, Milanovic Z. Can chronic stretching change the muscle-tendon mechanical properties? A review. Scand J Med Sci Sport. 2018;28:794–806.

Article  CAS  Google Scholar 

Borenstein M, Hedges L V, Higgins JPT, Rothstein HR. Introduction to meta-analysis. 2009. www.wiley.com. Accessed 2 Feb 2021.

Donti O, Konrad A, Panidi I, Dinas PC, Bogdanis GC. Is there a “window of opportunity” for flexibility development in youth? A systematic review with meta-analysis. Sport Med Open. 2022;8:88.

Article  Google Scholar 

Simenz CJ, Dugan CA, Ebben WP. Strength and conditioning practices of National Basketball Association strength and conditioning coaches. J Strength Cond Res. 2005;19:495–504.

PubMed  Google Scholar 

Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sport Exerc. 2009;41:3–13.

Article  Google Scholar 

Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

Article  PubMed  PubMed Central  Google Scholar 

Behm DG, Alizadeh S, Anvar SH, Drury B, Granacher U, Moran J. Non-local acute passive stretching effects on range of motion in healthy adults: a systematic review with meta-analysis. Sport Med. 2021;51(5):945–59.

Article  Google Scholar 

Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro Scale for rating quality of randomized controlled trials. Phys Ther. 2003;83:713–21.

Article  PubMed  Google Scholar 

Li L, Huang F, Huang Q, … LL-… T in H, 2020 undefined. Compression of myofascial trigger points with a foam roller or ball for exercise-induced anterior knee pain: a randomized controlled trial. http://search.ebscohost.com. Accessed 1 Dec 2021.

Smith JC, Washell BR, Aini MF, Brown S, Hall MC. Effects of static stretching and foam rolling on ankle dorsiflexion range of motion. Med Sci Sports Exerc. 2019;51:1752–8.

Article  PubMed  Google Scholar 

Junker DH, Stöggl TL. The foam roll as a tool to improve hamstring flexibility. J Strength Cond Res. 2015;29:3480–5.

Article  PubMed  Google Scholar 

Panidi I, Donti O, Konrad A, Dinas PC, Terzis G, Mouratidis A, et al. Muscle architecture adaptations to static stretching training: a systematic review with meta-analysis. Sport Med Open. 2023;9:47.

Article  Google Scholar 

Konrad A, Tilp M. Increased range of motion after static stretching is not due to changes in muscle and tendon structures. Clin Biomech. 2014;29:636–42.

Article  Google Scholar 

Konrad A, Nakamura M, Behm DG. Foam rolling training effects on performance parameters: a systematic review and meta-analysis. Int J Environ Res Public Health. 2022.

Kiyono R, Onuma R, Yasaka K, … SS-J of S, 2020 U. Effects of 5-week foam rolling intervention on range of motion and muscle stiffness. J Strength Cond Res. 2022;36:1890–5.

Kasahara K, Konrad A, Yoshida R, Murakami Y, Sato S, Aizawa K, et al. Comparison between 6-week foam rolling intervention program with and without vibration on rolling and non-rolling sides. Eur J Appl Physiol. 2022.

Westcott WL. Resistance training is medicine: effects of strength training on health. Curr Sports Med Rep. 2012;11:209–16.

Article  PubMed  Google Scholar 

Mujika I, Taipale RS. Sport science on women, women in sport science. Int J Sports Physiol Perform. 2019;14:1013–4.

Article  PubMed  Google Scholar 

Sutton AJ, Duval SJ, Tweedie RL, Abrams KR, Jones DR. Empirical assessment of effect of publication bias on meta-analyses. BMJ. 2000;320:1574–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Easterbrook PJ, Gopalan R, Berlin JA, Matthews DR. Publication bias in clinical research. Lancet. 1991;337:867–72.

Article  CAS  PubMed  Google Scholar 

Aquino CF, Fonseca ST, Gonçalves GGP, Silva PLP, Ocarino JM, Mancini MC. Stretching versus strength training in lengthened position in subjects with tight hamstring muscles: a randomized controlled trial. Man Ther. 2010;15:26–31.

Article  PubMed  Google Scholar 

Ayala F, Sainz de Baranda P, De Ste Croix M, Santonja F. Comparison of active stretching technique in males with normal and limited hamstring flexibility. Phys Ther Sport. 2013;14:98–104.

Ayala F, De Sainz BP, De Ste CM. Effect of active stretch on hip flexion range of motion in female professional futsal players. J Sports Med Phys Fit. 2010;50:428–35.

CAS  Google Scholar 

Bandy WD, Irion JM, Briggler M. The effect of static stretch and dynamic range of motion training on the flexibility of the hamstring muscles. J Orthop Sports Phys Ther. 1998;27:295–300.

Article  CAS  PubMed  Google Scholar 

Bandy WD, Irion JM, Briggler M. The effect of time and frequency of static stretching on flexibility of the hamstring muscles. Phys Ther. 1997;77:1090–6.

Article  CAS  PubMed  Google Scholar 

Barbosa GM, Figueirêdo Dantas GA, Silva BR, Souza TO, Brito Vieira WH. Static or dynamic stretching program does not change the acute responses of neuromuscular and functional performance in healthy subjects: a single-blind randomized controlled trial. Rev Bras Ciencias do Esporte. 2018;40:418–26.

Article  Google Scholar 

Batista LH, Vilar AC, De Almeida Ferreira JJ, Rebelatto JR, Salvini TF. Active stretching improves flexibility, joint torque, and functional mobility in older women. Am J Phys Med Rehabil. 2009;88:815–22.

Article  PubMed  Google Scholar 

Ben M, Harvey LA. Regular stretch does not increase muscle extensibility: a randomized controlled trial. Scand J Med Sci Sport. 2010;20:136–44.

Article  CAS  Google Scholar 

Blazevich AJ, Cannavan D, Waugh CM, Miller SC, Thorlund JB, Aagaard P, et al. Range of motion, neuromechanical, and architectural adaptations to plantar flexor stretch training in humans. J Appl Physiol. 2014;117:452–62.

Article  CAS  PubMed  Google Scholar 

Bybee RF, Mamantov J, Meekins W, Witt J, Byars A, Greenwood M. Comparison of two stretching protocols on lumbar spine extension. J Back Musculoskelet Rehabil. 2007;20:1–7.

Google Scholar 

Chan SP, Hong Y, Robinson PD. Flexibility and passive resistance of the hamstrings of young adults using two different static stretching protocols. Scand J Med Sci Sports. 2001;11:81–6.

Article  CAS  PubMed  Google Scholar 

Chepeha JC, Magee DJ, Bouliane M, Sheps D, Beaupre L. Effectiveness of a posterior shoulder stretching program on university-level overhead athletes: randomized controlled trial. Clin J Sport Med. 2018;28:146–52.

Article  PubMed  Google Scholar 

Cipriani DJ, Terry ME, Haines MA, Tabibnia AP, Lyssanova O. Effect of stretch frequency and sex on the rate of gain and rate of loss in muscle flexibility during a hamstring-stretching program: a randomized single-blind longitudinal study. J Strength Cond Res. 2012;26:2119–29.

Article  PubMed 

留言 (0)

沒有登入
gif