Pediatric three-dimensional quantitative cardiovascular computed tomography

Goo HW, Park IS, Ko JK et al (2003) CT of congenital heart disease: normal anatomy and typical pathologic conditions. Radiographics 23:S147–S165

Article  PubMed  Google Scholar 

Goo HW, Siripornpitak S, Chen S et al (2021) Pediatric cardiothoracic computed tomography guideline provided by the Asian Society of Cardiovascular Imaging (ASCI) Congenital Heart Disease Study Group: Part 2. Contemporary clinical applications. Korean J Radiol 22:1397–1415

Article  PubMed  PubMed Central  Google Scholar 

Hofmann LK, Becker CR, Flohr T, Schoepf UJ (2003) Multidetector-row CT of the heart. Semin Roentgenol 38:135–145

Article  PubMed  Google Scholar 

Goo HW, Yang DH (2010) Coronary artery visibility in free-breathing young children with congenital heart disease on cardiac 64-slice CT: dual-source ECG-triggered sequential scan vs. single-source non-ECG-synchronized spiral scan. Pediatr Radiol 40:1670–1680

Article  PubMed  Google Scholar 

Pache G, Grohmann J, Bulla S et al (2011) Prospective electrocardiography-triggered CT angiography of the great thoracic vessels in infants and toddlers with congenital heart disease: feasibility and image quality. Eur J Radiol 80:e440–e445

Article  PubMed  Google Scholar 

Nakagawa M, Ozawa Y, Nomura N et al (2016) Utility of dual source CT with ECG-triggered high-pitch spiral acquisition (Flash Spiral Cardio mode) to evaluate morphological features of ventricles in children with complex congenital heart defects. Jpn J Radiol 34:284–291

Article  PubMed  Google Scholar 

Hui PKT, Goo HW, Du J et al (2017) Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD). Pediatr Radiol 47:899–910

Article  PubMed  Google Scholar 

Rigsby CK, McKenney SE, Hill KD et al (2018) Radiation dose management for pediatric cardiac computed tomography: a report from the Image Gently ‘Have-A-Heart’ campaign. Pediatr Radiol 48:5–20

Article  PubMed  PubMed Central  Google Scholar 

Hong SW, Goo HW, Maeda E et al (2019) User-friendly, vendor-specific guideline for pediatric cardiothoracic computed tomography provided by the Asian Society of Cardiovascular Imaging (ASCI) Congenital Heart Disease Study Group: Part 1. Imaging techniques. Korean J Radiol 20:190–204

Article  PubMed  Google Scholar 

Francone M, Gimelli A, Budde RPJ et al (2022) Radiation safety for cardiovascular computed tomography imaging in paediatric cardiology: a joint expert consensus document of the EACVI, ESCR, AEPC, and ESPR. Eur Heart J Cardiovasc Imaging 23:e279–e289

Article  PubMed  Google Scholar 

Horst KK, Yu L, McCollough CH et al (2023) Potential benefits of photon counting detector computed tomography in pediatric imaging. Br J Radiol 96:20230189

Article  PubMed  Google Scholar 

Juergens KU, Grude M, Maintz D et al (2004) Multi-detector row CT of left ventricular function with dedicated analysis software versus MR imaging: initial experience. Radiology 230:403–410

Article  PubMed  Google Scholar 

Goo HW, Park SH (2015) Semiautomatic three-dimensional CT ventricular volumetry in patients with congenital heart disease: agreement between two methods with different user interaction. Int J Cardiovasc Imaging 31(Suppl 2):223–232

Article  PubMed  Google Scholar 

Goo HW (2017) Myocardial delayed enhancement CT: initial experience in children and young adults. Pediatr Radiol 47:1452–1462

Article  PubMed  Google Scholar 

Takx RA, Moscariello A, Schoepf UJ et al (2012) Quantification of left and right ventricular function and myocardial mass: comparison of low-radiation dose 2nd generation dual-source CT and cardiac MRI. Eur J Radiol 81:e598–e604

Article  PubMed  Google Scholar 

Kim JY, Suh YJ, Han K et al (2020) Cardiac CT for measurement of right ventricular volume and function in comparison with cardiac MRI: a meta-analysis. Korean J Radiol 21:450–461

Article  PubMed  PubMed Central  Google Scholar 

Sugeng L, Mor-Avi V, Weinert L et al (2010) Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC Cardiovasc Imaging 3:10–18

Article  PubMed  Google Scholar 

Retson TA, Masutani EM, Golden D, Hsiao A (2020) Clinical performance and role of expert supervision of deep learning for cardiac ventricular volumetry: a validation study. Radiol Artif Intell 2:e190064

Article  PubMed  PubMed Central  Google Scholar 

Koch K, Oellig F, Oberholzer K et al (2005) Assessment of right ventricular function by 16-detector-row CT: comparison with magnetic resonance imaging. Eur Radiol 15:312–318

Article  CAS  PubMed  Google Scholar 

Goo HW, Park SH (2018) Computed tomography-based ventricular volumes and morphometric parameters for deciding the treatment strategy in children with a hypoplastic left ventricle: preliminary results. Korean J Radiol 19:1042–1052

Article  PubMed  PubMed Central  Google Scholar 

Goo HW (2019) Semiautomatic three-dimensional threshold-based cardiac computed tomography ventricular volumetry in repaired tetralogy of Fallot: comparison with cardiac magnetic resonance imaging. Korean J Radiol 20:102–113

Article  PubMed  Google Scholar 

Stout KK, Daniels CJ, Aboulhosn JA et al (2019) 2018 AHA/ACC guideline for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation 139:e698–e800

PubMed  Google Scholar 

Goo HW (2019) Changes in right ventricular volume, volume load, and function measured with cardiac computed tomography over the entire time course of tetralogy of Fallot. Korean J Radiol 20:956–966

Article  PubMed  PubMed Central  Google Scholar 

Grothoff M, Hoffmann J, Lehmkuhl L et al (2011) Time course of right ventricular functional parameters after surgical correction of tetralogy of Fallot determined by cardiac magnetic resonance. Clin Res Cardiol 100:343–350

Article  CAS  PubMed  Google Scholar 

Śpiewak M, Małek ŁA, Petryka J et al (2013) Stable right ventricular size and function during short-term follow-up in patients with pulmonary regurgitation after tetralogy of Fallot repair. Clin Radiol 68:1206–1211

Article  PubMed  Google Scholar 

Buddhe S, Shah A, Lai WW (2015) Progression of right ventricular dilation in repaired tetralogy of Fallot. J Magn Reson Imaging 41:730–737

Article  PubMed  Google Scholar 

Rutz T, Ghandour F, Meierhofer C et al (2017) Evolution of right ventricular size over time after tetralogy of Fallot repair: a longitudinal cardiac magnetic resonance study. Eur Heart J Cardiovasc Imaging 18:364–370

Article  PubMed  Google Scholar 

Hoelscher M, Bonassin F, Oxenius A et al (2020) Right ventricular dilatation in patients with pulmonary regurgitation after repair of tetralogy of Fallot: how fast does it progress? Ann Pediatr Cardiol 13:294–300

Article  PubMed  PubMed Central  Google Scholar 

Goo HW, Park SH (2023) Identification of rapid progression of right ventricular functional measures using three-dimensional cardiac computed tomography after total surgical correction of tetralogy of Fallot. Eur J Radiol 164:110856

Article  PubMed  Google Scholar 

Heng EL, Gatzoulis MA, Uebing A et al (2017) Immediate and midterm cardiac remodeling after surgical pulmonary valve replacement in adults with repaired tetralogy of Fallot: a prospective cardiovascular magnetic resonance and clinical study. Circulation 136:1703–1713

Article  PubMed  PubMed Central  Google Scholar 

Lee C, Choi ES, Lee CH (2020) Long-term outcomes of pulmonary valve replacement in patients with repaired tetralogy of Fallot. Eur J Cardiothorac Surg 58:246–252

Article  PubMed  Google Scholar 

Gursu HA, Varan B, Sade E et al (2016) Analysis of right ventricle function with strain imaging before and after pulmonary valve replacement. Cardiol J 23:195–201

Article  PubMed  Google Scholar 

Hallbergson A, Gauvreau K, Powell AJ, Geva T (2015) Right ventricular remodeling after pulmonary valve replacement: early gains, late losses. Ann Thorac Surg 99:660–666

Article  PubMed  Google Scholar 

Tuo G, Khambadkone S, Tann O et al (2013) Obstructive left heart disease in neonates with a “borderline” left ventricle: diagnostic challenges to choosing the best outcome. Pediatr Cardiol 34:1567–1576

Article  PubMed  Google Scholar 

Kaplinski M, Cohen MS (2015) Characterising adequacy or inadequacy of the borderline left ventricle: what tools can we use? Cardiol Young 25:1482–1488

Article  PubMed  Google Scholar 

van Son JA, Phoon CK, Silverman NH, Haas GS (1997) Predicting feasibility of biventricular repair of right-dominant unbalanced atrioventricular canal. Ann Thorac Surg 63:1657–1663

Article  PubMed  Google Scholar 

Grosse-Wortmann L, Yun TJ, Al-Radi O et al (2008) Borderline hypoplasia of the left ventricle in neonates: insights for decision-making from functional assessment with magnetic resonance imaging. J Thorac Cardiovasc Surg 136:1429–1436

Article  PubMed  Google Scholar 

Goo HW (2017) Serial changes in anatomy and ventricular function on dual-source cardiac computed tomography after the Norwood procedure for hypoplastic left heart syndrome. Pediatr Radiol 47:1776–1786

Article  PubMed  Google Scholar 

Yoshimura N, Yamaguchi M (2009) Surgical strategy for pulmonary atresia with intact ventricular septum: initial management and definitive surgery. Gen Thorac Cardiovasc Surg 57:338–346

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif