Comparative Analysis of Atherogenic Lipoproteins L5 and Lp(a) in Atherosclerotic Cardiovascular Disease

Makover ME, Shapiro MD, Toth PP. There is urgent need to treat atherosclerotic cardiovascular disease risk earlier, more intensively, and with greater precision: A review of current practice and recommendations for improved effectiveness. Am J Prev Cardiol. 2022;12:100371.

. Krauss RM. Small dense low-density lipoprotein particles: clinically relevant? Curr Opin Lipidol. 2022;33:160–6. This is an extensive review of the clinical significance of sdLDL measurement.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berman AN, Biery DW, Besser SA, et al. Lipoprotein(a) and major adverse cardiovascular events in patients with or without baseline atherosclerotic cardiovascular disease. J Am Coll Cardiol. 2024;83:873–86.

Article  CAS  PubMed  Google Scholar 

Chen CH, Jiang T, Yang JH, et al. Low-density lipoprotein in hypercholesterolemic human plasma induces vascular endothelial cell apoptosis by inhibiting fibroblast growth factor 2 transcription. Circulation. 2003;107:2102–8.

Article  PubMed  Google Scholar 

Maranhao RC, Carvalho PO, Strunz CC, Pileggi F. Lipoprotein (a): structure, pathophysiology and clinical implications. Arq Bras Cardiol. 2014;103:76–84.

PubMed  PubMed Central  Google Scholar 

Ke LY, Engler DA, Lu J, et al. Chemical composition-oriented receptor selectivity of L5, a naturally occurring atherogenic low-density lipoprotein. Pure Appl Chem. 2011;83:10.1351/PAC-CON-10-12-07.

Berg K. A new serum type system in man--the Lp system. Acta Pathol Microbiol Scand. 1963;59:369–82.

Article  CAS  PubMed  Google Scholar 

Rainwater DL, Ludwig MJ, Haffner SM, VandeBerg JL. Lipid and lipoprotein factors associated with variation in Lp(a) density. Arterioscler Thromb Vasc Biol. 1995;15:313–9.

Article  CAS  PubMed  Google Scholar 

McLean JW, Tomlinson JE, Kuang WJ, et al. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature. 1987;330:132–7.

Article  CAS  PubMed  Google Scholar 

Boffa MB, Koschinsky ML. Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease. Nat Rev Cardiol. 2019;16:305–18.

Article  PubMed  Google Scholar 

Gabel BR, Koschinsky ML. Sequences within apolipoprotein(a) kringle IV types 6-8 bind directly to low-density lipoprotein and mediate noncovalent association of apolipoprotein(a) with apolipoprotein B-100. Biochemistry (Mosc). 1998;37:7892–8.

Article  CAS  Google Scholar 

Weisel JW, Nagaswami C, Woodhead JL, et al. The structure of lipoprotein(a) and ligand-induced conformational changes. Biochemistry (Mosc). 2001;40:10424–35.

Article  CAS  Google Scholar 

Nielsen LB. Atherogenecity of lipoprotein(a) and oxidized low density lipoprotein: insight from in vivo studies of arterial wall influx, degradation and efflux. Atherosclerosis. 1999;143:229–43.

Article  CAS  PubMed  Google Scholar 

Sanchez-Quesada JL, Villegas S, Ordonez-Llanos J. Electronegative low-density lipoprotein. A link between apolipoprotein B misfolding, lipoprotein aggregation and proteoglycan binding. Curr Opin Lipidol. 2012;23:479–86.

Article  CAS  PubMed  Google Scholar 

Yang CY, Chen HH, Huang MT, et al. Pro-apoptotic low-density lipoprotein subfractions in type II diabetes. Atherosclerosis. 2007;193:283–91.

Article  CAS  PubMed  Google Scholar 

Gaubatz JW, Gillard BK, Massey JB, et al. Dynamics of dense electronegative low density lipoproteins and their preferential association with lipoprotein phospholipase A(2). J Lipid Res. 2007;48:348–57.

Article  CAS  PubMed  Google Scholar 

Zalewski A, Macphee C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vasc Biol. 2005;25:923–31.

Article  CAS  PubMed  Google Scholar 

Benitez S, Sanchez-Quesada JL, Ribas V, et al. Platelet-activating factor acetylhydrolase is mainly associated with electronegative low-density lipoprotein subfraction. Circulation. 2003;108:92–6.

Article  CAS  PubMed  Google Scholar 

. Zhivaki D, Kagan JC. Innate immune detection of lipid oxidation as a threat assessment strategy. Nat Rev Immunol. 2022;22:322–30. This study describes how oxidized lipids hyperactivate dendritic cells to stimulate antitumor CD8+ T cell immunity and discusses the potential implications of the newly described activities of oxidized phosphocholines in host defense.

Article  CAS  PubMed  Google Scholar 

. Koschinsky ML, Boffa MB. Oxidized phospholipid modification of lipoprotein(a): Epidemiology, biochemistry and pathophysiology. Atherosclerosis. 2022;349:92–100. This extensive review brings important evidence to the readers’ attention, highlighting that oxidized phospholipids on Lp(a) have been implicated in a variety of significant proinflammatory effects of this lipoprotein. More importantly, it underscores that oxPL on Lp(a) plays a central role in its pathobiology.

Article  CAS  PubMed  Google Scholar 

Schnitzler JG, Dallinga-Thie GM, Kroon J. The role of (modified) lipoproteins in vascular function: A duet between monocytes and the endothelium. Curr Med Chem. 2019;26:1594–609.

Article  CAS  PubMed  Google Scholar 

Gargalovic PS, Imura M, Zhang B, et al. Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc Natl Acad Sci U S A. 2006;103:12741–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang CY, Raya JL, Chen HH, et al. Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arterioscler Thromb Vasc Biol. 2003;23:1083–90.

Article  CAS  PubMed  Google Scholar 

Sanchez-Quesada JL, Camacho M, Anton R, et al. Electronegative LDL of FH subjects: chemical characterization and induction of chemokine release from human endothelial cells. Atherosclerosis. 2003;166:261–70.

Article  CAS  PubMed  Google Scholar 

Chappey B, Myara I, Benoit MO, et al. Characteristics of ten charge-differing subfractions isolated from human native low-density lipoproteins (LDL). No evidence of peroxidative modifications. Biochim Biophys Acta. 1995;1259:261–70.

Article  PubMed  Google Scholar 

Kostner KM, Kostner GM. Lipoprotein (a): a historical appraisal. J Lipid Res. 2017;58:1–14.

Article  CAS  PubMed  Google Scholar 

Dieplinger H, Utermann G. The seventh myth of lipoprotein(a): where and how is it assembled? Curr Opin Lipidol. 1999;10:275–83.

Article  CAS  PubMed  Google Scholar 

Gencer B, Kronenberg F, Stroes ES, Mach F. Lipoprotein(a): the revenant. Eur Heart J. 2017;38:1553–60.

Article  CAS  PubMed  Google Scholar 

Chan DC, Pang J, Hooper AJ, et al. Effect of lipoprotein(a) on the diagnosis of familial hypercholesterolemia: Does it make a difference in the clinic? Clin Chem. 2019;65:1258–66.

Article  CAS  PubMed  Google Scholar 

Langsted A, Kamstrup PR, Benn M, et al. High lipoprotein(a) as a possible cause of clinical familial hypercholesterolaemia: a prospective cohort study. Lancet Diabetes Endocrinol. 2016;4:577–87.

Article  CAS  PubMed  Google Scholar 

Kronenberg F, Trenkwalder E, Lingenhel A, et al. Renovascular arteriovenous differences in Lp[a] plasma concentrations suggest removal of Lp[a] from the renal circulation. J Lipid Res. 1997;38:1755–63.

Article  CAS  PubMed  Google Scholar 

Kronenberg F, Ikewaki K, Schaefer JR, et al. Kinetic studies of atherogenic lipoproteins in hemodialysis patients: do they tell us more about their pathology? Semin Dial. 2007;20:554–60.

Article  PubMed  Google Scholar 

Greco G, Balogh G, Brunelli R, et al. Generation in human plasma of misfolded, aggregation-prone electronegative low density lipoprotein. Biophys J. 2009;97:628–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ke LY, Chan HC, Chen CC, et al. Increased APOE glycosylation plays a key role in the atherogenicity of L5 low-density lipoprotein. FASEB J. 2020;34:9802–13.

Article  CAS  PubMed  Google Scholar 

Hiukka A, Stahlman M, Pettersson C, et al. ApoCIII-enriched LDL in type 2 diabetes displays altered lipid composition, increased susceptibility for sphingomyelinase, and increased binding to biglycan. Diabetes. 2009;58:2018–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stancel N, Chen CC, Ke LY, et al. Interplay between CRP, atherogenic LDL, and LOX-1 and its potential role in the pathogenesis of atherosclerosis. Clin Chem. 2016;62:320–7.

Article  CAS  PubMed  Google Scholar 

Schnitzler JG, Hoogeveen RM, Ali L, et al. Atherogenic lipoprotein(a) increases vascular glycolysis, thereby facilitating inflammation and leukocyte extravasation. Circ Res. 2020;126:1346–59.

Article  CAS  PubMed  PubMed Central  Google Scholar 

. Afanasieva OI, Filatova AY, Arefieva TI, et al. The association of lipoprotein(a) and circulating monocyte subsets with severe coronary atherosclerosis. J Cardiovasc Dev Dis. 2021;8:63. This study describes the association between the increased concentration of Lp(a) and monocyte subpopulations in patients with different severity of coronary atherosclerosis.

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif