The speech neuroprosthesis

Felgoise, S. H., Zaccheo, V., Duff, J. & Simmons, Z. Verbal communication impacts quality of life in patients with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 17, 179–183 (2016).

Article  Google Scholar 

Das, J. M., Anosike, K. & Asuncion, R. M. D. Locked-in syndrome. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK559026/ (StatPearls, 2021).

Lulé, D. et al. Life can be worth living in locked-in syndrome. Prog. Brain Res. 177, 339–351 (2009).

Article  PubMed  Google Scholar 

Pels, E. G. M., Aarnoutse, E. J., Ramsey, N. F. & Vansteensel, M. J. Estimated prevalence of the target population for brain–computer interface neurotechnology in the Netherlands. Neurorehabil. Neural Repair 31, 677–685 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Koch Fager, S., Fried-Oken, M., Jakobs, T. & Beukelman, D. R. New and emerging access technologies for adults with complex communication needs and severe motor impairments: state of the science. Augment. Altern. Commun. Baltim. MD 1985 35, 13–25 (2019).

Google Scholar 

Vansteensel, M. J. et al. Fully implanted brain–computer interface in a locked-in patient with ALS. N. Engl. J. Med. 375, 2060–2066 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Utsumi, K. et al. Operation of a P300-based brain–computer interface in patients with Duchenne muscular dystrophy. Sci. Rep. 8, 1753 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Pandarinath, C. et al. High performance communication by people with paralysis using an intracortical brain–computer interface. eLife 6, e18554 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M. & Shenoy, K. V. High-performance brain-to-text communication via handwriting. Nature 593, 249–254 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang, E. F. & Anumanchipalli, G. K. Toward a speech neuroprosthesis. JAMA 323, 413–414 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Bull, P. & Frederikson, L. in Companion Encyclopedia of Psychology (Routledge, 1994).

Moses, D. A. et al. Neuroprosthesis for decoding speech in a paralyzed person with anarthria. N. Engl. J. Med. 385, 217–227 (2021). The authors first demonstrated speech decoding in a person with vocal-tract paralysis by decoding cortical activity word-by-word into sentences, using a vocabulary of 50 words at a rate of 15 wpm.

Article  PubMed  PubMed Central  Google Scholar 

Angrick, M. et al. Online speech synthesis using a chronically implanted brain–computer interface in an individual with ALS. Preprint at medRxiv https://doi.org/10.1101/2023.06.30.23291352 (2023). The authors demonstrated speech synthesis of single words from cortical activity during attempted speech in a person with vocal-tract paralysis.

Metzger, S. L. et al. A high-performance neuroprosthesis for speech decoding and avatar control. Nature https://doi.org/10.1038/s41586-023-06443-4 (2023). The authors reported demonstrations of speech synthesis and avatar animation (orofacial-movement decoding), along with improved text-decoding vocabulary size and speed, by using connectionist temporal classification loss to train models to map persistent-somatotopic representations on the sensorimotor cortex into sentences during silent speech (a large vocabulary was used at a speech rate of 78wpm).

Willett, F. R. et al. A high-performance speech neuroprosthesis. Nature https://doi.org/10.1038/s41586-023-06377-x (2023). The authors improved text decoding to an expansive vocabulary size at 62wpm, by training models with connectionist temporal classification loss to decode sentences from multiunit activity from microelectrode arrays on precentral gyrus while a person with dysarthria silently attempted to speak.

Card, N. S. et al. An Accurate and Rapidly Calibrating Speech Neuroprosthesis https://doi.org/10.1101/2023.12.26.23300110 (2023). The authors used a similar approach to Willett et al. (2023), demonstrating that doubling the number of microelectrode arrays in the precentral gyrus further improved text-decoding accuracy with a rate of 33wpm.

Bouchard, K. E., Mesgarani, N., Johnson, K. & Chang, E. F. Functional organization of human sensorimotor cortex for speech articulation. Nature 495, 327–332 (2013). Here, the authors demonstrated the dynamics of somatotopic organization and speech-articulator representations for the jaw, lips, tongue and larynx during production of syllables, directly connecting phonetic production with speech-motor control of vocal-tract movements.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carey, D., Krishnan, S., Callaghan, M. F., Sereno, M. I. & Dick, F. Functional and quantitative MRI mapping of somatomotor representations of human supralaryngeal vocal tract. Cereb. Cortex N. Y. N. 1991 27, 265–278 (2017).

Google Scholar 

Ludlow, C. L. Central nervous system control of the laryngeal muscles in humans. Respir. Physiol. Neurobiol. 147, 205–222 (2005).

Article  PubMed  PubMed Central  Google Scholar 

Browman, C. P. & Goldstein, L. Articulatory gestures as phonological units. Phonology 6, 201–251 (1989).

Article  Google Scholar 

Ladefoged, P. & Johnson, K. A Course in Phonetics (Cengage Learning, 2014).

Berry, J. J. Accuracy of the NDI wave speech research system. J. Speech Lang. Hear. Res. 54, 1295–1301 (2011).

Article  PubMed  Google Scholar 

Liu, P. et al. A deep recurrent approach for acoustic-to-articulatory inversion. In 2015 IEEE International Conf. Acoustics, Speech and Signal Processing (ICASSP) https://doi.org/10.1109/ICASSP.2015.7178812 (2015).

Chartier, J., Anumanchipalli, G. K., Johnson, K. & Chang, E. F. Encoding of articulatory kinematic trajectories in human speech sensorimotor cortex. Neuron 98, 1042–1054.e4 (2018). The authors demonstrated that, during continuous speech in able speakers, cortical activity on the ventral sensorimotor cortex encodes coordinated kinematic trajectories of speech articulators and gives rise to a low-dimensional representation of consonants and vowels.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Illa, A. & Ghosh, P. K. Representation learning using convolution neural network for acoustic-to-articulatory inversion. In ICASSP 2019 — 2019 IEEE International Conf. Acoustics, Speech and Signal Processing (ICASSP) https://doi.org/10.1109/ICASSP.2019.8682506 (2019).

Shahrebabaki, A. S., Salvi, G., Svendsen, T. & Siniscalchi, S. M. Acoustic-to-articulatory mapping with joint optimization of deep speech enhancement and articulatory inversion models. IEEEACM Trans. Audio Speech Lang. Process. 30, 135–147 (2022).

Article  Google Scholar 

Tychtl, Z. & Psutka, J. Speech production based on the mel-frequency cepstral coefficients. In 6th European Conf. Speech Communication and Technology (Eurospeech 1999) https://doi.org/10.21437/Eurospeech.1999-510 (ISCA, 1999).

Belyk, M. & Brown, S. The origins of the vocal brain in humans. Neurosci. Biobehav. Rev. 77, 177–193 (2017).

Article  PubMed  Google Scholar 

Simonyan, K. & Horwitz, B. Laryngeal motor cortex and control of speech in humans. Neuroscientist 17, 197–208 (2011).

Article  PubMed  PubMed Central  Google Scholar 

McCawley, J. D. in Tone (ed. Fromkin, V. A.) 113–131 (Academic, 1978).

Murray, I. R. & Arnott, J. L. Toward the simulation of emotion in synthetic speech: a review of the literature on human vocal emotion. J. Acoust. Soc. Am. 93, 1097–1108 (1993).

Article  CAS  PubMed  Google Scholar 

Chomsky, N. & Halle, M. The Sound Pattern of English (Harper, 1968).

Baddeley, A. Working Memory xi, 289 (Clarendon/Oxford Univ. Press, 1986).

Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937). The authors demonstrated evidence of somatotopy on sensorimotor cortex by localizing cortical-stimulation-induced movement and sensation for individual muscle groups.

Article  Google Scholar 

Penfield, W. & Roberts, L. Speech and Brain-Mechanisms (Princeton Univ. Press, 1959). This study provided insights into cortical control of speech and language through neurosurgical cases, including cortical resection, direct-cortical stimulation and seizure mapping.

Cushing, H. A note upon the Faradic stimulation of the postcentral gyrus in conscious patients. Brain 32, 44–53 (1909). This study was one of the first that applied direct-cortical stimulation to localize function on the sensorimotor cortex.

Article  Google Scholar 

Roux, F.-E., Niare, M., Charni, S., Giussani, C. & Durand, J.-B. Functional architecture of the motor homunculus detected by electrostimulation. J. Physiol. 598, 5487–5504 (2020).

Article  CAS  PubMed  Google Scholar 

Jensen, M. A. et al. A motor association area in the depths of the central sulcus. Nat. Neurosci. 26, 1165–1169 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eichert, N., Papp, D., Mars, R. B. & Watkins, K. E. Mapping human laryngeal motor cortex during vocalization. Cereb. Cortex 30, 6254–6269 (2020).

Article  PubMed  Google Scholar 

Umeda, T., Isa, T. & Nishimura, Y. The somatosensory cortex receives information about motor output. Sci. Adv. 5, eaaw5388 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Murray, E. A. & Coulter, J. D. Organization of corticospinal neurons in the monkey. J. Comp. Neurol. 195, 339–365 (1981).

Article  CAS  PubMed  Google Scholar 

Arce, F. I., Lee, J.-C., Ross, C. F., Sessle, B. J. & Hatsopoulos, N. G. Directional information from neuronal ensembles in the primate orofacial sensorimotor cortex. Am. J. Physiol. Heart Circ. Physiol. https://doi.org/10.1152/jn.00144.2013 (2013).

Mugler, E. M. et al. Differential representation of articulatory gestures and phonemes in precentral and inferior frontal gyri. J. Neurosci. 4653, 1206–1218 (2018). The authors demonstrated that the ventral sensorimotor cortex, not Broca’s area in the inferior frontal gyrus, best represents speech-articulatory gestures.

Google Scholar 

Dichter, B. K., Breshears, J. D., Leonard, M. K. & Chang, E. F. The control of vocal pitch in human laryngeal motor cortex. Cell 174, 21–31.e9 (2018). The authors uncovered the causal role of the dorsal laryngeal motor cortex in controlling vocal pitch through feedforward motor commands, as well as additional auditory properties.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Belyk, M., Eichert, N. & McGettigan, C. A dual larynx motor networks hypothesis. Philos. Trans. R. Soc. B 376, 20200392 (2021).

Article  Google Scholar 

Lu, J. et al. Neural control of lexical tone production in human laryngeal motor cortex. Nat. Commun. 14, 6917 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silva, A. B. et al. A neurosurgical functional dissection of the middle precentral gyrus during speech production. J. Neurosci. 42, 8416–8426 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Itabashi, R. et al. Damage to the left precentral gyrus is associated with apraxia of speech in acute stroke. Stroke 47, 31–36 (2016).

Article  PubMed  Google Scholar 

Chang, E. F. et al. Pure apraxia of speech after resection based in the posterior middle frontal gyrus. Neurosurgery 87, E383–E389 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Levy, D. F. et al. Apraxia of speech with phonological alexia and agraphia following resection of the left middle precentral gyrus: illustrative case. J. Neurosurg. Case Lessons 5, CASE22504 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Willett, F. R. et al. Hand knob area of premotor cortex represents the whole body in a compositional way. Cell 181, 396–409.e26 (2020).

留言 (0)

沒有登入
gif