Ginseng-DF ameliorates intestinal mucosal barrier injury and enhances immunity in immunosuppressed mice by regulating MAPK/NF-κB signaling pathways

Gray JI, Farber DL (2022) Tissue-resident immune cells in humans. Annu Rev Immunol 40:195–220. https://doi.org/10.1146/annurev-immunol-093019-112809

Article  CAS  PubMed  Google Scholar 

Emadi A, Jones RJ, Brodsky RA (2009) Cyclophosphamide and cancer: golden anniversary. Nat Rev Clin Oncol 6(11):638–647. https://doi.org/10.1038/nrclinonc.2009.146

Article  CAS  PubMed  Google Scholar 

Highley MS, Landuyt B, Prenen H, Harper PG, De Bruijn EA (2022) The nitrogen mustards. Pharmacol Rev 74(3):552–599. https://doi.org/10.1124/pharmrev.120.000121

Article  CAS  PubMed  Google Scholar 

Ponticelli C, Escoli R, Moroni G (2018) Does cyclophosphamide still play a role in glomerular diseases? Autoimmun Rev 17(10):1022–1027. https://doi.org/10.1016/j.autrev.2018.04.007

Article  CAS  PubMed  Google Scholar 

Suarez-Almazor ME, Belseck E, Shea B, Wells G, Tugwell P (2000) Cyclophosphamide for rheumatoid arthritis. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD001157

Article  PubMed  PubMed Central  Google Scholar 

Fluckiger A, Daillere R, Sassi M, Sixt BS, Liu P, Loos F, Richard C, Rabu C, Alou MT, Goubet AG, Lemaitre F, Ferrere G, Derosa L, Duong CPM, Messaoudene M, Gagne A, Joubert P, De Sordi L, Debarbieux L, Simon S, Scarlata CM, Ayyoub M, Palermo B, Facciolo F, Boidot R, Wheeler R, Boneca IG, Sztupinszki Z, Papp K, Csabai I, Pasolli E, Segata N, Lopez-Otin C, Szallasi Z, Andre F, Iebba V, Quiniou V, Klatzmann D, Boukhalil J, Khelaifia S, Raoult D, Albiges L, Escudier B, Eggermont A, Mami-Chouaib F, Nistico P, Ghiringhelli F, Routy B, Labarriere N, Cattoir V, Kroemer G, Zitvogel L (2020) Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 369(6506):936–942. https://doi.org/10.1126/science.aax0701

Article  CAS  PubMed  Google Scholar 

Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14(3):141–153. https://doi.org/10.1038/nri3608

Article  CAS  PubMed  Google Scholar 

Weitkamp JH, Koyama T, Rock MT, Correa H, Goettel JA, Matta P, Oswald-Richter K, Rosen MJ, Engelhardt BG, Moore DJ, Polk DB (2013) Necrotising enterocolitis is characterised by disrupted immune regulation and diminished mucosal regulatory (FOXP3)/effector (CD4, CD8) T cell ratios. Gut 62(1):73–82. https://doi.org/10.1136/gutjnl-2011-301551

Article  CAS  PubMed  Google Scholar 

Shakoor H, Feehan J, Apostolopoulos V, Platat C, Al Dhaheri AS, Ali HI, Ismail LC, Bosevski M, Stojanovska L (2021) Immunomodulatory effects of dietary polyphenols. Nutrients. https://doi.org/10.3390/nu13030728

Article  PubMed  PubMed Central  Google Scholar 

Arthur JS, Ley SC (2013) Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13(9):679–692. https://doi.org/10.1038/nri3495

Article  CAS  PubMed  Google Scholar 

Chen J, Chen X, Xuan Y, Shen H, Tang Y, Zhang T, Xu J (2023) Surface functionalization-dependent inflammatory potential of polystyrene nanoplastics through the activation of MAPK/NF-kappaB signaling pathways in macrophage Raw 264.7. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2023.114520

Article  PubMed  PubMed Central  Google Scholar 

Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, Pudlo NA, Kitamoto S, Terrapon N, Muller A, Young VB, Henrissat B, Wilmes P, Stappenbeck TS, Nunez G, Martens EC (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167(5):1339-1353 e1321. https://doi.org/10.1016/j.cell.2016.10.043

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao H, Song RJ, Jiang H, Zhang W, Han SF (2022) Oat fiber supplementation alleviates intestinal inflammation and ameliorates intestinal mucosal barrier via acting on gut microbiota-derived metabolites in LDLR(−/−) mice. Nutrition 95:111558. https://doi.org/10.1016/j.nut.2021.111558

Article  CAS  PubMed  Google Scholar 

Ejima R, Akiyama M, Sato H, Tomioka S, Yakabe K, Kimizuka T, Seki N, Fujimura Y, Hirayama A, Fukuda S, Hase K, Kim YG (2021) Seaweed dietary fiber sodium alginate suppresses the migration of colonic inflammatory monocytes and diet-induced metabolic syndrome via the gut microbiota. Nutrients. https://doi.org/10.3390/nu13082812

Article  PubMed  PubMed Central  Google Scholar 

Liu J, Wang Z, Mai P, Hao Y, Wang Z, Wang J (2022) Quinoa bran soluble dietary fiber ameliorates dextran sodium sulfate induced ulcerative colitis in BALB/c mice by maintaining intestinal barrier function and modulating gut microbiota. Int J Biol Macromol 216:75–85. https://doi.org/10.1016/j.ijbiomac.2022.06.194

Article  CAS  PubMed  Google Scholar 

Huang J, Liu D, Wang Y, Liu L, Li J, Yuan J, Jiang Z, Jiang Z, Hsiao WW, Liu H, Khan I, Xie Y, Wu J, Xie Y, Zhang Y, Fu Y, Liao J, Wang W, Lai H, Shi A, Cai J, Luo L, Li R, Yao X, Fan X, Wu Q, Liu Z, Yan P, Lu J, Yang M, Wang L, Cao Y, Wei H, Leung EL (2022) Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy. Gut 71(4):734–745. https://doi.org/10.1136/gutjnl-2020-321031

Article  CAS  PubMed  Google Scholar 

Chen LX, Qi YL, Qi Z, Gao K, Gong RZ, Shao ZJ, Liu SX, Li SS, Sun YS (2019) A comparative study on the effects of different parts of Panax ginseng on the immune activity of cyclophosphamide-induced immunosuppressed mice. Molecules. https://doi.org/10.3390/molecules24061096

Article  PubMed  PubMed Central  Google Scholar 

He LX, Zhang ZF, Zhao J, Li L, Xu T, Bin S, Ren JW, Liu R, Chen QH, Wang JB, Salem MM, Pettinato G, Zhou JR, Li Y (2018) Ginseng oligopeptides protect against irradiation-induced immune dysfunction and intestinal injury. Sci Rep 8(1):13916. https://doi.org/10.1038/s41598-018-32188-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hua M, Sun Y, Shao Z, Lu J, Lu Y, Liu Z (2020) Functional soluble dietary fiber from ginseng residue: polysaccharide characterization, structure, antioxidant, and enzyme inhibitory activity. J Food Biochem 44(12):e13524. https://doi.org/10.1111/jfbc.13524

Article  CAS  PubMed  Google Scholar 

Hua M, Lu J, Qu D, Liu C, Zhang L, Li S, Chen J, Sun Y (2019) Structure, physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue: a potential functional ingredient. Food Chem 286:522–529. https://doi.org/10.1016/j.foodchem.2019.01.114

Article  CAS  PubMed  Google Scholar 

Hua M, Liu Z, Sha J, Li S, Dong L, Sun Y (2021) Effects of ginseng soluble dietary fiber on serum antioxidant status, immune factor levels and cecal health in healthy rats. Food Chem 365:130641. https://doi.org/10.1016/j.foodchem.2021.130641

Article  CAS  PubMed  Google Scholar 

Hua M, Fan ML, Li ZM, Sha JY, Li SS, Sun YS (2021) Ginseng soluble dietary fiber can regulate the intestinal flora structure, promote colon health, affect appetite and glucolipid metabolism in rats. J Funct Foods. https://doi.org/10.1016/j.jff.2021.104534

Article  Google Scholar 

Patra K, Bose S, Sarkar S, Rakshit J, Jana S, Mukherjee A, Roy A, Mandal DP, Bhattacharjee S (2012) Amelioration of cyclophosphamide induced myelosuppression and oxidative stress by cinnamic acid. Chem Biol Interact 195(3):231–239. https://doi.org/10.1016/j.cbi.2012.01.001

Article  CAS  PubMed  Google Scholar 

Delmanto RD, de Lima PL, Sugui MM, da Eira AF, Salvadori DM, Speit G, Ribeiro LR (2001) Antimutagenic effect of Agaricus blazei Murrill mushroom on the genotoxicity induced by cyclophosphamide. Mutat Res 496(1–2):15–21. https://doi.org/10.1016/s1383-5718(01)00228-5

Article  CAS  PubMed  Google Scholar 

Jantan I, Haque MA, Ilangkovan M, Arshad L (2019) Zerumbone from Zingiber zerumbet inhibits innate and adaptive immune responses in Balb/C mice. Int Immunopharmacol 73:552–559. https://doi.org/10.1016/j.intimp.2019.05.035

Article  CAS  PubMed  Google Scholar 

Zhang J, Zhou HC, He SB, Zhang XF, Ling YH, Li XY, Zhang H, Hou DD (2021) The immunoenhancement effects of sea buckthorn pulp oil in cyclophosphamide-induced immunosuppressed mice. Food Funct 12(17):7954–7963. https://doi.org/10.1039/d1fo01257f

Article  CAS  PubMed  Google Scholar 

Han X, Bai B, Zhou Q, Niu J, Yuan J, Zhang H, Jia J, Zhao W, Chen H (2020) Dietary supplementation with polysaccharides from Ziziphus jujuba cv. Pozao intervenes in immune response via regulating peripheral immunity and intestinal barrier function in cyclophosphamide-induced mice. Food Funct 11(7):5992–6006. https://doi.org/10.1039/d0fo00008f

Article  CAS  PubMed  Google Scholar 

Hu JN, Yang JY, Jiang S, Zhang J, Liu Z, Hou JG, Gong XJ, Wang YP, Wang Z, Li W (2021) Panax quinquefolium saponins protect against cisplatin evoked intestinal injury via ROS-mediated multiple mechanisms. Phytomedicine 82:153446. https://doi.org/10.1016/j.phymed.2020.153446

Article  CAS  PubMed  Google Scholar 

Ren DD, Li SS, Lin HM, Xia YS, Li ZM, Bo PP, Mu R, Zhao LJ, Sun YS (2022) Panax quinquefolius polysaccharides ameliorate antibiotic-associated diarrhoea induced by lincomycin hydrochloride in rats via the MAPK signaling pathways. J Immunol Res 2022:4126273. https://doi.org/10.1155/2022/4126273

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330. https://doi.org/10.1038/nature21349

Article  CAS  PubMed 

留言 (0)

沒有登入
gif