Zhang, S. et al. Immunomodulatory biomaterials against bacterial infections: progress, challenges, and future perspectives. The Innovation 4, 100503 (2023).
Article CAS PubMed PubMed Central Google Scholar
Zelmer, A. R., Nelson, R., Richter, K. & Atkins, G. J. Can intracellular Staphylococcus aureus in osteomyelitis be treated using current antibiotics? A systematic review and narrative synthesis. Bone Res. 10, 53 (2022).
Article CAS PubMed PubMed Central Google Scholar
Masters, E. A. et al. Evolving concepts in bone infection: redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”. Bone Res. 7, 20 (2019).
Article PubMed PubMed Central Google Scholar
Zalavras, C. G. & Patzakis, M. J. Open fractures: evaluation and management. J. Am. Acad. Orthop. Surg. 11, 212–219 (2003).
Metsemakers, W. J. et al. Infection after fracture fixation: current surgical and microbiological concepts. Injury 49, 511–522 (2018).
Article CAS PubMed Google Scholar
Schwarz, E. M. et al. 2018 International consensus meeting on musculoskeletal infection: research priorities from the general assembly questions. J. Orthop. Res. 37, 997–1006 (2019).
Ramage, G., Tunney, M. M., Patrick, S., Gorman, S. P. & Nixon, J. R. Formation of propionibacterium acnes biofilms on orthopaedic biomaterials and their susceptibility to antimicrobials. Biomaterials 24, 3221–3227 (2003).
Article CAS PubMed Google Scholar
Veis, D. J. & Cassat, J. E. Infectious osteomyelitis: marrying bone biology and microbiology to shed new light on a persistent clinical challenge. J. Bone Miner. Res. 36, 636–643 (2021).
Conterno, L. O. & Turchi, M. D. Antibiotics for treating chronic osteomyelitis in adults. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD004439.pub3 (2013).
Calhoun, J., Manring, M. M. & Shirtliff, M. Osteomyelitis of the long bones. Semin. Plast. Surg. 23, 059–072 (2009).
Fantoni, M., Taccari, F. & Giovannenze, F. Systemic antibiotic treatment of chronic osteomyelitis in adults. Eur. Rev. Med. Pharmacol. Sci. 23, 258–270 (2019).
Calhoun, J. H. & Manring, M. M. Adult osteomyelitis. Infect. Dis. Clin. North Am. 19, 765–786 (2005).
Cui, Y. et al. Dual-functional composite scaffolds for inhibiting infection and promoting bone regeneration. Mater. Today Bio. 16, 100409 (2022).
Article CAS PubMed PubMed Central Google Scholar
Xiong, Y. et al. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Mil. Med. Res. 9, 65 (2022).
CAS PubMed PubMed Central Google Scholar
Salhotra, A., Shah, H. N., Levi, B. & Longaker, M. T. Mechanisms of bone development and repair. Nat. Rev. Mol. Cell Biol. 21, 696–711 (2020).
Article CAS PubMed PubMed Central Google Scholar
Wang, X., Wang, Z., Fu, J., Huang, K. & Xie, Z. Induced membrane technique for the treatment of chronic hematogenous tibia osteomyelitis. BMC Musculoskelet. Disord. 18, 33 (2017).
Article PubMed PubMed Central Google Scholar
Tong, K. et al. Masquelet technique versus Ilizarov bone transport for reconstruction of lower extremity bone defects following posttraumatic osteomyelitis. Injury 48, 1616–1622 (2017).
Khare, D., Basu, B. & Dubey, A. K. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials 258, 120280 (2020).
Pacheco, H. et al. Tissue engineering scaffold for sequential release of vancomycin and rhBMP2 to treat bone infections: release of vancomycin and rhBMP2 to treat bone infections. J. Biomed. Mater. Res. A 102, 4213–4223 (2014).
Xie, C. M. et al. Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties. ACS Appl. Mater. Interfaces 6, 8580–8589 (2014).
Article CAS PubMed Google Scholar
Lian, X. et al. Antibacterial and biocompatible properties of vancomycin-loaded nano-hydroxyapatite/collagen/poly (lactic acid) bone substitute. Prog. Nat. Sci. Mater. Int. 23, 549–556 (2013).
Rigby, K. M. & DeLeo, F. R. Neutrophils in innate host defense against Staphylococcus aureus infections. Semin. Immunopathol. 34, 237–259 (2012).
Article CAS PubMed Google Scholar
Bröker, B., Mrochen, D. & Péton, V. The T cell response to Staphylococcus aureus. Pathogens 5, 31 (2016).
Article PubMed PubMed Central Google Scholar
Lüthje, F. L. et al. Receptor activator of nuclear factor kappa-B ligand is not regulated during chronic osteomyelitis in pigs. J. Comp. Pathol. 179, 7–24 (2020).
Libraty, D. H., Patkar, C. & Torres, B. Staphylococcus aureus reactivation osteomyelitis after 75 years. N. Engl. J. Med. 366, 481–482 (2012).
Article CAS PubMed Google Scholar
Fraunholz, M. & Sinha, B. Intracellular Staphylococcus aureus: live-in and let die. Front. Cell. Infect. Microbiol. 2, 43 (2012).
Article PubMed PubMed Central Google Scholar
Garzoni, C. & Kelley, W. L. Return of the Trojan horse: intracellular phenotype switching and immune evasion by Staphylococcus aureus. EMBO Mol. Med. 3, 115–117 (2011).
Article CAS PubMed PubMed Central Google Scholar
Edwards, A. M., Potts, J. R., Josefsson, E. & Massey, R. C. Staphylococcus aureus host cell invasion and virulence in sepsis is facilitated by the multiple repeats within FnBPA. PLoS Pathog. 6, e1000964 (2010).
Article PubMed PubMed Central Google Scholar
Ellington, J. K. et al. Intracellular Staphylococcus aureus: a mechanism for the indolence of osteomyelitis. J. Bone Joint Surg. Br. 85-B, 918–921 (2003).
Josse, J., Velard, F. & Gangloff, S. C. Staphylococcus aureus vs. osteoblast: relationship and consequences in osteomyelitis. Front. Cell. Infect. Microbiol. 5, 85 (2015).
Article PubMed PubMed Central Google Scholar
Münzenmayer, L. et al. Influence of sae-regulated and agr-regulated factors on the escape of Staphylococcus aureus from human macrophages: S. aureus factors for macrophage escape. Cell. Microbiol. 18, 1172–1183 (2016).
Proctor, R. A. et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat. Rev. Microbiol. 4, 295–305 (2006).
Article CAS PubMed Google Scholar
Cai, Y. et al. The role of Staphylococcus aureus small colony variants in intraosseous invasion and colonization in periprosthetic joint infection. Bone Jt. Res. 11, 843–853 (2022).
You, L. D., Weinbaum, S., Cowin, S. C. & Schaffler, M. B. Ultrastructure of the osteocyte process and its pericellular matrix. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 278A, 505–513 (2004).
Gatica, D., Lahiri, V. & Klionsky, D. J. Cargo recognition and degradation by selective autophagy. Nat. Cell Biol. 20, 233–242 (2018).
Article CAS PubMed PubMed Central Google Scholar
Zoller, S. D. et al. Evading the host response: Staphylococcus “hiding” in cortical bone canalicular system causes increased bacterial burden. Bone Res. 8, 43 (2020).
Article CAS PubMed PubMed Central Google Scholar
Masters, E. A. et al. Staphylococcus aureus cell wall biosynthesis modulates bone invasion and osteomyelitis pathogenesis. Front. Microbiol. 12, 723498 (2021).
Article PubMed PubMed Central Google Scholar
de Mesy Bentley, K. L., MacDonald, A., Schwarz, E. M. & Oh, I. Chronic osteomyelitis with Staphylococcus aureus deformation in submicron canaliculi of osteocytes: a case report. J. Bone Joint Surg. Am. 8, e8 (2018).
Teng, H. et al. Novel Insights into the evolution of the caveolin superfamily and mechanisms of antiapoptotic effects and cell proliferation in lamprey. Dev. Comp. Immunol. 95, 118–128 (2019).
Article CAS PubMed Google Scholar
Karygianni, L., Ren, Z., Koo, H. & Thurnheer, T. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol. 28, 668–681 (2020).
留言 (0)