Achkar NP, Cambiagno DA, Manavella PA (2016) miRNA biogenesis: a dynamic pathway. Trends Plant Sci 21:1034–1044. https://doi.org/10.1016/J.TPLANTS.2016.09.003
Article CAS PubMed Google Scholar
Andrew W, Martino B, Stefan B et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46: W296–W303. https://doi.org/10.1093/nar/gky427
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. https://doi.org/10.1016/S0092-8674(04)00045-5
Article CAS PubMed Google Scholar
Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. https://doi.org/10.1016/J.CELL.2009.01.002
Article CAS PubMed PubMed Central Google Scholar
Basit A, Liu J, Rahim K et al (2018) Thermophilic xylanases: from bench to bottle. Crit Rev Biotech-Nol 38:989–1002. https://doi.org/10.1080/07388551.2018.1425662
Baumgarten A, Cannon S, Spangler R, May G (2003) Genome-level evolution of resistance genes in Arabidopsis thaliana. Genetics 165:309–319. https://doi.org/10.1093/GENETICS/165.1.309
Article CAS PubMed PubMed Central Google Scholar
Beaugrand J, Gebruers K, Ververken C et al (2006) Antibodies against wheat xylanase inhibitors as tools for the selective identification of their homologues in other cereals. J Cereal Sci 44:59–67. https://doi.org/10.1016/J.JCS.2006.02.003
Beliën T, Van Campenhout S, Van Acker M et al (2007) Mutational analysis of endoxylanases XylA and XylB from the phytopathogen fusarium graminearum reveals comprehensive insights into Their inhibitor insensitivity. Appl Environ Microbiol 73:4602–4608. https://doi.org/10.1128/AEM.00442-07
Article CAS PubMed PubMed Central Google Scholar
Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinform 10:1–9. https://doi.org/10.1186/1471-2105-10-421
Cannon SB, Mitra A, Baumgarten A et al (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:1–21. https://doi.org/10.1186/1471-2229-4-10
Chen VB, Davis IW, Richardson DC (2009) KING (Kinemage, Next Generation): a versatile interactive molecular and scientific visualization program. Protein Sci 18: 2403–2409. https://doi.org/10.1002/pro.250
Article CAS PubMed PubMed Central Google Scholar
Chen C, Chen H, Zhang Y et al (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202. https://doi.org/10.1016/J.MOLP.2020.06.009
Article CAS PubMed Google Scholar
Chunxiao HOU (2014) Functions and expression patterns of rice xylanase inhibitory proteins. Biologia Plant. https://doi.org/10.1007/s10535-018-0787-2
Damian S, Rebecca K, Mikaela K et al (2023) The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 51: D638–D646. https://doi.org/10.1093/nar/gkac1000
DeLano W L (2002) Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr 40:82–92. https://legacy.ccp4.ac.uk/newsletters/newsletter40/11_pymol.html
Durand A, Hughes R, Roussel A et al (2005) Emergence of a subfamily of xylanase inhibitors within glycoside hydrolase family 18. FEBS J 272:1745–1755. https://doi.org/10.1111/J.1742-4658.2005.04606.X
Article CAS PubMed Google Scholar
Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195. https://doi.org/10.1371/JOURNAL.PCBI.1002195
Article CAS PubMed PubMed Central Google Scholar
Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37. https://doi.org/10.1093/NAR/GKR367
Article CAS PubMed PubMed Central Google Scholar
Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. New Phytol 183:557–564. https://doi.org/10.1111/J.1469-8137.2009.02923.X
Gao F, Li J, Zhang J et al (2022) Genome-wide identification of the ZIP gene family in lettuce (Lactuca sativa L.) and expression analysis under different element stress. PLoS One 17:e0274319. https://doi.org/10.1371/JOURNAL.PONE.0274319
Article CAS PubMed PubMed Central Google Scholar
Goesaert H, Elliott G, Kroon PA et al (2004) Occurrence of proteinaceous endoxylanase inhibitors in cereals. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics 1696:193–202. https://doi.org/10.1016/J.BBAPAP.2003.08.015
Article CAS PubMed Google Scholar
Goesaert H, Gebruers K, Courtin CM, Delcour JA (2005) Purification and characterization of a XIP-type endoxylanase inhibitor from rice (Oryza sativa). J Enzyme Inhib Med Chem 20:95–101. https://doi.org/10.1080/14756360400002080
Article CAS PubMed Google Scholar
Guo H, Zhang Y, Wang Z et al (2019) Genome-wide identification of WRKY transcription factors in the asteranae. Plants 8:393. https://doi.org/10.3390/PLANTS8100393
Article CAS PubMed PubMed Central Google Scholar
Gusakov AV (2010) Proteinaceous inhibitors of microbial xylanases. Biochem (Moscow) 75:1185–1199. https://doi.org/10.1134/S0006297910100019/METRICS
Helen M, John W, Zukang F et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235
Hou CX, Zhan YH, Jiang DA, Weng XY (2014) Functional characterization of a new pathogen induced xylanase inhibitor (RIXI) from rice. Eur J Plant Pathol 138:405–414. https://doi.org/10.1007/S10658-013-0342-0
Houb EB (2001) The arms race is ancient history in Arabidopsis, the wildflower. Nature Reviews Genetics 2:516–527. https://doi.org/10.1038/35080508
Hu L, Wang P, Hao Z et al (2021) Gibberellin oxidase gene family in L. Chinense: genome-wide identification and gene expression analysis. Int J Mol Sci 22:7167. https://doi.org/10.3390/ijms22137167
Article PubMed PubMed Central Google Scholar
Ishida K, Noutoshi Y (2022) The function of the plant cell wall in plant-microbe interactions. Plant Physiol Biochem 1:273–284. https://doi.org/10.1016/j.plaphy.2022.10.015
Jiao Y, Wang Y, Xue D et al (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics 42:541–544. https://doi.org/10.1038/ng.591
Juge N, Delcour J (2006) Proteinaceous Xylanase inhibitors: structure, function and evolution. Curr Enzym Inhib 2:29–35. https://doi.org/10.2174/157340806775473562
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. https://doi.org/10.1038/nmeth.4285
Article CAS PubMed PubMed Central Google Scholar
Kumar S, Singh N, Sinha M et al (2010) Crystal structure determination and inhibition studies of a novel xylanase and α-amylase inhibitor protein (XAIP) from Scadoxus multiflorus. FEBS J 277:2868–2882. https://doi.org/10.1111/j.1742-4658.2010.07703.x
Article CAS PubMed Google Scholar
Lei P, Wei X, Gao R et al (2021) Genome-wide identification of PYL gene family in wheat: Evolution, expression and 3D structure analysis. Genomics 113:854–866. https://doi.org/10.1016/J.YGENO.2020.12.017
Article CAS PubMed Google Scholar
Li MY, Jiao YT, Wang YT et al (2020) CRISPR/Cas9-mediated VvPR4b editing decreases downy mildew resistance in grapevine (Vitis vinifera L.). Hortic Res 7:149. https://doi.org/10.1038/S41438-020-00371-4
Article CAS PubMed PubMed Central Google Scholar
Liu H, Lyu HM, Zhu K et al (2021) The emergence and evolution of intron-poor and intronless genes in intron-rich plant gene families. Plant J 105:1072–1082. https://doi.org/10.1111/TPJ.15088
Article CAS PubMed PubMed Central Google Scholar
Liu M, Li J, Rehman AU et al (2022a) Sensitivity of family GH11 bacillus amyloliquefaciens xylanase A (BaxA) and the T33I mutant to Oryza sativa xylanase inhibitor protein (OsXIP): an experimental and computational study. Enzyme Microb Technol 156:109998. https://doi.org/10.1016/J.ENZMICTEC.2022.109998
留言 (0)