Podocyte-targeted therapies — progress and future directions

Pavenstadt, H., Kriz, W. & Kretzler, M. Cell biology of the glomerular podocyte. Physiol. Rev. 83, 253–307 (2003).

Article  CAS  PubMed  Google Scholar 

Abrahamson, D. R. Role of the podocyte (and glomerular endothelium) in building the GBM. Semin. Nephrol. 32, 342–349 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Srivastava, T. et al. Mechanotransduction signaling in podocytes from fluid flow shear stress. Am. J. Physiol. Ren. Physiol. 314, F22–F34 (2018).

Article  Google Scholar 

Smoyer, W. E. & Mundel, P. Regulation of podocyte structure during the development of nephrotic syndrome. J. Mol. Med. 76, 172–183 (1998).

Article  CAS  PubMed  Google Scholar 

Ichimura, K., Kurihara, H. & Sakai, T. Actin filament organization of foot processes in rat podocytes. J. Histochem. Cytochem. 51, 1589–1600 (2003).

Article  CAS  PubMed  Google Scholar 

Schell, C. & Huber, T. B. The evolving complexity of the podocyte cytoskeleton. J. Am. Soc. Nephrol. 28, 3166–3174 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wharram, B. L. et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 16, 2941–2952 (2005).

Article  CAS  PubMed  Google Scholar 

Dimke, H., Maezawa, Y. & Quaggin, S. E. Crosstalk in glomerular injury and repair. Curr. Opin. Nephrol. Hypertens. 24, 231–238 (2015).

PubMed  PubMed Central  Google Scholar 

Xing, C. Y. et al. Direct effects of dexamethasone on human podocytes. Kidney Int. 70, 1038–1045 (2006).

Article  CAS  PubMed  Google Scholar 

Fornoni, A. et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci. Transl. Med. 3, 85ra46 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Faul, C. et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 14, 931–938 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dahl, N. K. et al. The clinical utility of genetic testing in the diagnosis and management of adults with chronic kidney disease. J. Am. Soc. Nephrol. 34, 2039–2050 (2023).

Article  PubMed  Google Scholar 

Thompson, A. et al. Proteinuria reduction as a surrogate end point in trials of IgA nephropathy. Clin. J. Am. Soc. Nephrol. 14, 469–481 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao, T. et al. Integration of genetic testing and pathology for the diagnosis of adults with FSGS. Clin. J. Am. Soc. Nephrol. 14, 213–223 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sampson, M. G. et al. Using population genetics to interrogate the monogenic nephrotic syndrome diagnosis in a case cohort. J. Am. Soc. Nephrol. 27, 1970–1983 (2016).

Article  CAS  PubMed  Google Scholar 

Trautmann, A., Lipska-Zietkiewicz, B. S. & Schaefer, F. Exploring the clinical and genetic spectrum of steroid resistant nephrotic syndrome: the PodoNet registry. Front. Pediatr. 6, 200 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Bierzynska, A. et al. Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int. 91, 937–947 (2017).

Article  PubMed  Google Scholar 

Buscher, A. K. et al. Immunosuppression and renal outcome in congenital and pediatric steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 5, 2075–2084 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Palmer, N. D. & Freedman, B. I. APOL1 and progression of nondiabetic nephropathy. J. Am. Soc. Nephrol. 24, 1344–1346 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Savin, V. J. et al. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N. Engl. J. Med. 334, 878–883 (1996).

Article  CAS  PubMed  Google Scholar 

Gallon, L., Leventhal, J., Skaro, A., Kanwar, Y. & Alvarado, A. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N. Engl. J. Med. 366, 1648–1649 (2012).

Article  CAS  PubMed  Google Scholar 

Cara-Fuentes, G. et al. CD80 and suPAR in patients with minimal change disease and focal segmental glomerulosclerosis: diagnostic and pathogenic significance. Pediatr. Nephrol. 29, 1363–1371 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Wei, C. et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 17, 952–960 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clement, L. C. et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat. Med. 17, 117–122 (2011).

Article  CAS  PubMed  Google Scholar 

Sharma, M. et al. Janus kinase 2/signal transducer and activator of transcription 3 inhibitors attenuate the effect of cardiotrophin-like cytokine factor 1 and human focal segmental glomerulosclerosis serum on glomerular filtration barrier. Transl. Res. 166, 384–398 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delville, M. et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci. Transl. Med. 6, 256ra136 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Deegens, J. K. & Wetzels, J. F. Glomerular disease: the search goes on: suPAR is not the elusive FSGS factor. Nat. Rev. Nephrol. 10, 431–432 (2014).

Article  CAS  PubMed  Google Scholar 

Kronbichler, A., Saleem, M. A., Meijers, B. & Shin, J. I. Soluble urokinase receptors in focal segmental glomerulosclerosis: a review on the scientific point of view. J. Immunol. Res. 2016, 2068691 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Watts, A. J. B. et al. Discovery of autoantibodies targeting nephrin in minimal change disease supports a novel autoimmune etiology. J. Am. Soc. Nephrol. 33, 238–252 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shirai, Y. et al. A multi-institutional study found a possible role of anti-nephrin antibodies in post-transplant focal segmental glomerulosclerosis recurrence. Kidney Int. 105, 608–617 (2023).

Article  PubMed  Google Scholar 

Zang, N. et al. cGAS-STING activation contributes to podocyte injury in diabetic kidney disease. iScience 25, 105145 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, J. et al. The key role of NLRP3 and STING in APOL1-associated podocytopathy. J. Clin. Invest. 131, e136329 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, B. C. et al. Minimal change disease is associated with mitochondrial injury and STING pathway activation. J. Clin. Med. 11, 577 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pedigo, C. E. et al. Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. J. Clin. Invest. 126, 3336–3350 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Idasiak-Piechocka, I., Oko, A., Pawliczak, E., Kaczmarek, E. & Czekalski, S. Urinary excretion of soluble tumour necrosis factor receptor 1 as a marker of increased risk of progressive kidney function deterioration in patients with primary chronic glomerulonephritis. Nephrol. Dial. Transpl. 25, 3948–3956 (2010).

Article  CAS  Google Scholar 

Chung, C. F. et al. Intrinsic tumor necrosis factor-α pathway is activated in a subset of patients with focal segmental glomerulosclerosis. PLoS One 14, e0216426 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joy, M. S. et al. Phase 1 trial of adalimumab in focal segmental glomerulosclerosis (FSGS): II. Report of the FONT (Novel Therapies for Resistant FSGS) study group. Am. J. Kidney Dis. 55, 50–60 (2010).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif