Genetics of glycosylation in mammalian development and disease

Takahashi, M., Hasegawa, Y., Maeda, K., Kitano, M. & Taniguchi, N. Role of glycosyltransferases in carcinogenesis; growth factor signaling and EMT/MET programs. Glycoconj. J. 39, 167–176 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan, J., Dunn, J., Jaeken, J. & Schachter, H. Mutations in the MGAT2 gene controlling complex N-glycan synthesis cause carbohydrate-deficient glycoprotein syndrome type II, an autosomal recessive disease with defective brain development. Am. J. Hum. Genet. 59, 810–817 (1996).

CAS  PubMed  PubMed Central  Google Scholar 

Lefeber, D. J. et al. Congenital Disorders of Glycosylation in Essentials of Glycobiology 4th edn Ch. 45 (eds A. Varki et al.) 599–614 (Cold Spring Harbor Laboratory, 2022).

Radovani, B. & Gudelj, I. N-Glycosylation and inflammation; the not-so-sweet relation. Front. Immunol. 13, 893365 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grzesik, K., Janik, M. & Hoja-Lukowicz, D. The hidden potential of glycomarkers: glycosylation studies in the service of cancer diagnosis and treatment. Biochim. Biophys. Acta Rev. Cancer 1878, 188889 (2023).

Article  CAS  PubMed  Google Scholar 

Ninagawa, S., George, G. & Mori, K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim. Biophys. Acta Gen. Subj. 1865, 129812 (2021).

Article  CAS  PubMed  Google Scholar 

Liu, Y. C. et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc. Natl Acad. Sci. USA 108, 11332–11337 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yen, H. Y. et al. Effect of sialylation on EGFR phosphorylation and resistance to tyrosine kinase inhibition. Proc. Natl Acad. Sci. USA 112, 6955–6960 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saiki, W., Ma, C., Okajima, T. & Takeuchi, H. Current views on the roles of O-glycosylation in controlling notch-ligand interactions. Biomolecules 11, 309 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paulson, J. C. & Colley, K. J. Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J. Biol. Chem. 264, 17615–17618 (1989).

Article  CAS  PubMed  Google Scholar 

Terrapon, N. et al. A genomic view of glycobiology in Essentials of Glycobiology 4th edn Ch. 8 (eds A. Varki et al.) 93–102 (Cold Spring Harbor Laboratory, 2022).

Slavov, N. Single-cell proteomics: quantifying post-transcriptional regulation during development with mass-spectrometry. Development 150, dev201492 (2023).

Article  CAS  PubMed  Google Scholar 

Huang, Y. F. et al. Global mapping of glycosylation pathways in human-derived cells. Dev. Cell 56, 1195–1209.e7 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dworkin, L. A., Clausen, H. & Joshi, H. J. Applying transcriptomics to study glycosylation at the cell type level. iScience 25, 104419 (2022). This paper presents a method for using genome-wide transcription data for glycosyltransferases to predict the predominant glycans synthesized in a particular cell type. The discussion includes a lengthy analysis of the limitations of this and related algorithms.

Article  CAS  PubMed  PubMed Central  Google Scholar 

York, W. S. et al. GlyGen: computational and informatics resources for glycoscience. Glycobiology 30, 72–73 (2020).

Article  CAS  PubMed  Google Scholar 

de Las Rivas, M., Lira-Navarrete, E., Gerken, T. A. & Hurtado-Guerrero, R. Polypeptide GalNAc-Ts: from redundancy to specificity. Curr. Opin. Struct. Biol. 56, 87–96 (2019).

Article  Google Scholar 

Sosicka, P. et al. Origin of cytoplasmic GDP-fucose determines its contribution to glycosylation reactions. J. Cell Biol. 221, e202205038 (2022). This paper provides evidence for the surprising conclusion that GDP-Fuc exists in separate cytoplasmic pools depending on the pathway by which it is synthesized.

Article  CAS  PubMed  PubMed Central  Google Scholar 

D’Souza, Z., Sumya, F. T., Khakurel, A. & Lupashin, V. Getting sugar coating right! The role of the Golgi trafficking machinery in glycosylation. Cells 10, 3275 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Aryal, R. P., Ju, T. & Cummings, R. D. The endoplasmic reticulum chaperone Cosmc directly promotes in vitro folding of T-synthase. J. Biol. Chem. 285, 2456–2462 (2010).

Article  CAS  PubMed  Google Scholar 

Ju, T. & Cummings, R. D. A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc. Natl Acad. Sci. USA 99, 16613–16618 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pechincha, C. et al. Lysosomal enzyme trafficking factor LYSET enables nutritional usage of extracellular proteins. Science 378, eabn5637 (2022). The value of unbiased CRISPR screening is exemplified in this paper, which reports the discovery of a molecular chaperone termed LYSET that is essential for the stability and therefore function of the phospho-GlcNAc transferase that modifies lysosomal hydrolases, tagging them for routing to the lysosome.

Article  CAS  PubMed  Google Scholar 

Yamaji, T. et al. A CRISPR screen identifies LAPTM4A and TM9SF proteins as glycolipid-regulating factors. iScience 11, 409–424 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian, S. et al. Genome-wide CRISPR screens for Shiga toxins and ricin reveal Golgi proteins critical for glycosylation. PLoS Biol. 16, e2006951 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Jennemann, R. & Grone, H. J. Cell-specific in vivo functions of glycosphingolipids: lessons from genetic deletions of enzymes involved in glycosphingolipid synthesis. Prog. Lipid Res. 52, 231–248 (2013).

Article  CAS  PubMed  Google Scholar 

Stanley, P. What have we learned from glycosyltransferase knockouts in mice. J. Mol. Biol. 428, 3166–3182 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kinoshita, T. Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biol. 10, 190290 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mizumoto, S. & Yamada, S. An overview of in vivo functions of chondroitin sulfate and dermatan sulfate revealed by their deficient mice. Front. Cell Dev. Biol. 9, 764781 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Benz, B. A. et al. Genetic and biochemical evidence that gastrulation defects in Pofut2 mutants result from defects in ADAMTS9 secretion. Dev. Biol. 416, 111–122 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luca, V. C. et al. Structural basis for Notch1 engagement of Delta-like 4. Science 347, 847–853 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luca, V. C. et al. Notch-Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science 355, 1320–1324 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Varshney, S. et al. A modifier in the 129S2/SvPasCrl genome is responsible for the viability of Notch1[12f/12f] mice. BMC Dev. Biol. 19, 19 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Ge, C. & Stanley, P. The O-fucose glycan in the ligand-binding domain of Notch1 regulates embryogenesis and T cell development. Proc. Natl Acad. Sci. USA 105, 1539–1544 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan, Y. T. et al. Dual roles of Cripto as a ligand and coreceptor in the nodal signaling pathway. Mol. Cell Biol. 22, 4439–4449 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi, S. et al. The threonine that carries fucose, but not fucose, is required for Cripto to facilitate Nodal signaling. J. Biol. Chem. 282, 20133–20141 (2007).

Article  CAS  PubMed  Google Scholar 

Moran, J. L. et al. Manic fringe is not required for embryonic development, and fringe family members do not exhibit redundant functions in the axial skeleton, limb, or hindbrain. Dev. Dyn. 238, 1803–1812 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rana, N. A. & Haltiwanger, R. S. Fringe benefits: functional and structural impacts of O-glycosylation on the extracellular domain of Notch receptors. Curr. Opin. Struct. Biol. 21, 583–589 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan, J. B. et al. Lunatic and manic fringe cooperatively enhance marginal zone B cell precursor competition for delta-like 1 in splenic endothelial niches. Immunity 30, 254–263 (2009).

留言 (0)

沒有登入
gif