Roles and Mechanisms of miRNAs in Abdominal Aortic Aneurysm: Signaling Pathways and Clinical Insights

Johnston KW, Rutherford RB, Tilson MD, Shah DM, Hollier L, Stanley JC. Suggested standards for reporting on arterial aneurysms. Subcommittee on Reporting Standards for Arterial Aneurysms, Ad Hoc Committee on Reporting Standards, Society for Vascular Surgery and North American Chapter, International Society for Cardiovascular Surgery. J Vasc Surg. 1991;13:452–8.

Li X, Zhao G, Zhang J, Duan Z, Xin S. Prevalence and trends of the abdominal aortic aneurysms epidemic in general population–a meta-analysis. PLoS ONE. 2013;8:e81260.

Article  PubMed  PubMed Central  Google Scholar 

Golledge J, Norman PE. Current status of medical management for abdominal aortic aneurysm. Atherosclerosis. 2011;217:57–63.

Article  CAS  PubMed  Google Scholar 

Golledge J, Muller J, Daugherty A, Norman P. Abdominal aortic aneurysm: pathogenesis and implications for management. Arterioscler Thromb Vasc Biol. 2006;26:2605–13.

Article  CAS  PubMed  Google Scholar 

Kent KC. Clinical practice. Abdominal aortic aneurysms. N Engl J Med. 2014;371:2101–8.

Article  CAS  PubMed  Google Scholar 

Ailawadi G, Eliason JL, Upchurch GR. Current concepts in the pathogenesis of abdominal aortic aneurysm. J Vasc Surg. 2003;38:584–8.

Article  PubMed  Google Scholar 

Li Y, Maegdefessel L. Non-coding RNA Contribution to Thoracic and Abdominal Aortic Aneurysm Disease Development and Progression. Front Physiol. 2017;8:429.

Article  PubMed  PubMed Central  Google Scholar 

Yu M, Chen Q, Li Q, Teng Y, Xiao L, Yang G, et al. A Disintegrin and Metalloprotease 10 Expressions Modulate Potential Metastatic and Thrombus Formation in Pancreatic Carcinoma. Iran J Public Health. 2022;51:1778–89.

PubMed  PubMed Central  Google Scholar 

Renfeng Q, Shuxiao C, Peixian G, Kun L, Xuedong F, Hai Y, et al. ADAM10 attenuates the development of abdominal aortic aneurysms in a mouse model. Mol Med Rep. 2021;24:774.

Article  PubMed  Google Scholar 

Chen Z, Ouyang C, Zhang H, Gu Y, Deng Y, Du C, et al. Vascular smooth muscle cell-derived hydrogen sulfide promotes atherosclerotic plaque stability via TFEB (transcription factor EB)-mediated autophagy. Autophagy. 2022;18:2270–87.

Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75:855–62.

Article  CAS  PubMed  Google Scholar 

de Rie D, Abugessaisa I, Alam T, Arner E, Arner P, Ashoor H, et al. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol. 2017;35:872–8.

Article  PubMed  PubMed Central  Google Scholar 

Adam M, Raaz U, Spin JM, Tsao PS. MicroRNAs in Abdominal Aortic Aneurysm. Curr Vasc Pharmacol. 2015;13:280–90.

Article  CAS  PubMed  Google Scholar 

Borek A, Drzymała F, Botor M, Auguściak-Duma AM, Sieroń AL. Roles of microRNAs in abdominal aortic aneurysm pathogenesis and the possibility of their use as biomarkers. Kardiochir Torakochirurgia Pol. 2019;16:124–7.

PubMed  PubMed Central  Google Scholar 

Yu Q, Li Q, Yang X, Liu Q, Deng J, Zhao Y, et al. Dexmedetomidine suppresses the development of abdominal aortic aneurysm by downregulating the mircoRNA-21/PDCD 4 axis. Int J Mol Med. 2021;47:90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang Y, Ma Z, Yang G, Wan J, Li G, Du L, et al. Alginate oligosaccharide indirectly affects toll-like receptor signaling via the inhibition of microRNA-29b in aneurysm patients after endovascular aortic repair. Drug Des Devel Ther. 2017;11:2565–79.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Zhao W-S, Xu L, Wang X, Li X-L, Yang X-C. Endothelium-specific endothelin-1 expression promotes pro-inflammatory macrophage activation by regulating miR-33/NR4A axis. Exp Cell Res. 2021;399:112443.

Article  CAS  PubMed  Google Scholar 

Murphy EP, Crean D. Molecular interactions between NR4A orphan nuclear receptors and NF-κB Are required for appropriate inflammatory responses and immune cell homeostasis. Biomolecules. 2015;5:1302–18. 

Yu J, Liu R, Huang J, Wang L, Wang W. Inhibition of Phosphatidylinositol 3-kinease suppresses formation and progression of experimental abdominal aortic aneurysms. Sci Rep. 2017;7:15208.

Article  PubMed  PubMed Central  Google Scholar 

Shen G, Sun Q, Yao Y, Li S, Liu G, Yuan C, et al. Role of ADAM9 and miR-126 in the development of abdominal aortic aneurysm. Atherosclerosis. 2020;297:47–54.

Article  CAS  PubMed  Google Scholar 

Shi X, Ma W, Li Y, Wang H, Pan S, Tian Y, et al. MiR-144-5p limits experimental abdominal aortic aneurysm formation by mitigating M1 macrophage-associated inflammation: Suppression of TLR2 and OLR1. J Mol Cell Cardiol. 2020;143:1–14.

Article  CAS  PubMed  Google Scholar 

Sun X, Icli B, Wara AK, Belkin N, He S, Kobzik L, et al. MicroRNA-181b regulates NF-κB-mediated vascular inflammation. J Clin Invest. 2012;122:1973–90.

CAS  PubMed  PubMed Central  Google Scholar 

Ma X, Yao H, Yang Y, Jin L, Wang Y, Wu L, et al. miR-195 suppresses abdominal aortic aneurysm through the TNF-α/NF-κB and VEGF/PI3K/Akt pathway. Int J Mol Med. 2018;41:2350–8.

CAS  PubMed  Google Scholar 

• Wang S, Wang J, Cai D, Li X, Zhong L, He X, et al. Reactive oxygen species-induced long intergenic noncoding RNA p21 accelerates abdominal aortic aneurysm formation by promoting secretary smooth muscle cell phenotypes. J Mol Cell Cardiol. 2023;174:63–76. This study deminstrated that reactive oxygen species-induced lincRNA-p21 sponges miR-204-5p to accelerate synthetic and proinflammatory SMC phenotypes through the Mekk3/NF-κB signaling pathway in AAA formation.

Article  CAS  PubMed  Google Scholar 

Zhao F, Chen T, Jiang N. CDR1as/miR-7/CKAP4 axis contributes to the pathogenesis of abdominal aortic aneurysm by regulating the proliferation and apoptosis of primary vascular smooth muscle cells. Exp Ther Med. 2020;19:3760–6.

CAS  PubMed  PubMed Central  Google Scholar 

Tuffy KM, Planey SL. Cytoskeleton-associated protein 4: functions beyond the endoplasmic reticulum in physiology and disease. Int Sch Res Not. 2012;2012:e142313.

Google Scholar 

Maegdefessel L, Azuma J, Toh R, Deng A, Merk DR, Raiesdana A, et al. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci Transl Med. 2012;4:122ra22.

Article  PubMed  PubMed Central  Google Scholar 

Yang P, Peairs JJ, Tano R, Jaffe GJ. Oxidant-mediated Akt activation in human RPE cells. Invest Ophthalmol Vis Sci. 2006;47:4598–606.

Article  PubMed  Google Scholar 

Byeon SH, Lee SC, Choi SH, Lee H-K, Lee JH, Chu YK, et al. Vascular endothelial growth factor as an autocrine survival factor for retinal pigment epithelial cells under oxidative stress via the VEGF-R2/PI3K/Akt. Invest Ophthalmol Vis Sci. 2010;51:1190–7.

Article  PubMed  Google Scholar 

Zhao L, Huang J, Zhu Y, Han S, Qing K, Wang J, et al. miR-33-5p knockdown attenuates abdominal aortic aneurysm progression via promoting target adenosine triphosphate-binding cassette transporter A1 expression and activating the PI3K/Akt signaling pathway. Perfusion. 2020;35:57–65.

Article  CAS  PubMed  Google Scholar 

Wang Y, Zhai S, Xing J, He Y, Li T. LncRNA GAS5 promotes abdominal aortic aneurysm formation through regulating the miR-185-5p/ADCY7 axis. Anticancer Drugs. 2022;33:225–34.

Article  CAS  PubMed  Google Scholar 

Ma D, Zheng B, Liu H-L, Zhao Y-B, Liu X, Zhang X-H, et al. Klf5 down-regulation induces vascular senescence through eIF5a depletion and mitochondrial fission. PLoS Biol. 2020;18:e3000808.

Article  CAS  PubMed  PubMed Central  Google Scholar 

You W, Hong Y, He H, Huang X, Tao W, Liang X, et al. TGF-β mediates aortic smooth muscle cell senescence in Marfan syndrome. Aging (Albany NY). 2019;11:3574–84.

Article  CAS  PubMed  Google Scholar 

Cooper HA, Cicalese S, Preston KJ, Kawai T, Okuno K, Choi ET, et al. Targeting mitochondrial fission as a potential therapeutic for abdominal aortic aneurysm. Cardiovasc Res. 2021;117:971–82.

Article  CAS  PubMed  Google Scholar 

Nakao T, Horie T, Baba O, Nishiga M, Nishino T, Izuhara M, et al. Genetic ablation of MicroRNA-33 attenuates inflammation and abdominal aortic aneurysm formation via several anti-inflammatory pathways. Arterioscler Thromb Vasc Biol. 2017;37:2161–70.

Article  CAS  PubMed  Google Scholar 

Maguire EM, Pearce SWA, Xiao R, Oo AY, Xiao Q. Matrix Metalloproteinase in Abdominal Aortic Aneurysm and Aortic Dissection. Pharmaceuticals (Basel). 2019;12:118.

Article  CAS  PubMed  Google Scholar 

Wang Q, Shu C, Su J, Li X. A crosstalk triggered by hypoxia and maintained by MCP-1/miR-98/IL-6/p38 regulatory loop between human aortic smooth muscle cells and macrophages leads to aortic smooth muscle cells apoptosis via Stat1 activation. Int J Clin Exp Pathol. 2015;8:2670–9.

PubMed  PubMed Central  Google Scholar 

Shi C, Shen C, Liu G, Yang S, Ye F, Meng J, et al. NEAT1 promotes the repair of abdominal aortic aneurysms of endothelial progenitor cells via regulating miR-204-5p/Ang-1. Am J Transl Res. 2021;13:2111–26.

CAS  PubMed  PubMed Central  Google Scholar 

Zhang D, Lu D, Xu R, Zhai S, Zhang K. Inhibition of XIST attenuates abdominal aortic aneurysm in mice by regulating apoptosis of vascular smooth muscle cells through miR-762/MAP2K4 axis. Microvasc Res. 2022;140:104299.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif