Influence of Preterm Birth and Low Birthweight on Physical Fitness: A Systematic Review, Meta-Analysis, and Meta-Regression

Howson C, Kinney M, Lawn J. Born too soon: the global action report on preterm birth. World Heal Organ. 2012;29:283–7.

Google Scholar 

Goldenberg RL, Culhane JF. Low birthweight in the United States. Am J Clin Nutr. 2007;85:584–90.

Article  Google Scholar 

Chawanpaiboon S, Vogel JP, Moller AB, Lumbiganon P, Petzold M, Hogan D, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Heal. 2019;7:e37-46.

Article  Google Scholar 

WHO. Global nutrition targets. Low birth weight policy brief. World Heal Organ. 2025;2002(287):270.

Google Scholar 

Perin J, Mulick A, Yeung D, Villavicencio F, Lopez G, Strong K, et al. Global, regional, and national causes of under-5 mortality in 2000–19: an updated systematic analysis with implications for the sustainable development goals. Lancet Child Adolesc Heal. 2022;6:106–15. https://doi.org/10.1016/S2352-4642(21)00311-4.

Article  Google Scholar 

Risnes K, Bilsteen J, Brown P, Pulakka A, Andersen A, Opdahl S, et al. Mortality among young adults born preterm and early term in 4 Nordic nations. JAMA Netw Open. 2021;4:1–12.

Article  Google Scholar 

Crump C, Sundquist J, Winkleby M, Sundquist K. Gestational age at birth and mortality from infancy into mid-adulthood: a national cohort study. Lancet Child Adolesc Hea. 2019;3:408–17. https://doi.org/10.1016/S2352-4642(19)30108-7.

Article  Google Scholar 

Metgud CS, Naik VA, Mallapur MD. Factors affecting birthweight of a newborn—a community based study in rural Karnataka, India. PLoS ONE. 2012;7: e40040.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lawn JE, Wilczynska-Ketende K, Cousens SN. Estimating the causes of 4 million neonatal deaths in the year 2000. Int J Epidemiol. 2006;35:706–18.

Article  PubMed  Google Scholar 

Nugent JT, Lu Y, Deng Y. Effect measure modification by birth weight on the association between overweight or obesity and hypertension in children and adolescents. JAMA J Am Med Assoc. 2023;7:735–7.

Google Scholar 

Carr H, Cnattingius S, Granath F, Ludvigsson JF, EdstedtBonamy AK. Preterm birth and risk of heart failure up to early adulthood. J Am Coll Cardiol. 2017;69:2634–42.

Article  PubMed  Google Scholar 

De Jong F, Monuteaux MC, Van Elburg RM, Gillman MW, Belfort MB. Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension. 2012;59:226–34.

Article  PubMed  Google Scholar 

Lewandowski AJ, Augustine D, Lamata P, Davis EF, Lazdam M, Francis J, et al. Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation. 2013;127:197–206.

Article  PubMed  Google Scholar 

Lilja L, Bygdell M, Martikainen J, Rosengren A, Ohlsson C, Kindblom JM. Low birth weight as an early-life risk factor for adult stroke among men. J Pediatr. 2021;237:162-167.e4. https://doi.org/10.1016/j.jpeds.2021.06.050.

Article  PubMed  Google Scholar 

Crump C, Howell EA, Stroustrup A, McLaughlin MA, Sundquist J, Sundquist K. Association of preterm birth with risk of ischemic heart disease in adulthood. JAMA Pediatr. 2019;173:736–43.

Article  PubMed  PubMed Central  Google Scholar 

Yang F, Janszky I, Gissler M, Cnattingius S, Roos N, Miao M, Yuan W, et al. Preterm birth, small for gestational age, and large for gestational age and the risk of atrial fibrillation up to middle age. JAMA Pediatr. 2023;177:599.

Article  PubMed  PubMed Central  Google Scholar 

Kvaavik E, Klepp K, Tell GS, Meyer HE, Batty GD. Physical fitness and physical activity at age 13 years as predictors of cardiovascular disease risk factors at ages 15, 25, 33, and 40 years: extended follow-up of the Oslo youth study. Pediatrics. 2009;123:e80–6.

Article  PubMed  Google Scholar 

Mintjens S, Menting MD, Daams JG, Van PMNM, Roseboom TJ. Cardiorespiratory fitness in childhood and adolescence affects future cardiovascular risk factors: a systematic review of longitudinal studies. Sport Med. 2018;48:2577–605.

Article  Google Scholar 

García-Hermoso A, Ramírez-Vélez R, García-Alonso Y, Alonso-Martínez A, Izquierdo M. Association of cardiorespiratory fitness levels during youth with health risk later in life: a systematic review and meta-analysis. JAMA Pediatr. 2020;174:952–60.

Article  PubMed  Google Scholar 

Fraser BJ, Blizzard L, Buscot MJ, Schmidt MD, Dwyer T, Venn AJ, et al. Muscular strength measured across the life-course and the metabolic syndrome. Nutr Metab Cardiovasc Dis. 2022;32:1131–7. https://doi.org/10.1016/j.numecd.2022.01.018.

Article  PubMed  Google Scholar 

García-Hermoso A, Cavero-Redondo I, Ramírez-Vélez R, Ruiz JR, Ortega FB, Lee DC, et al. Muscular strength as a predictor of all-cause mortality in an apparently healthy population: a systematic review and meta-analysis of data from approximately 2 million men and women. Arch Phys Med Rehabil. 2018;99:2100-2113.e5.

Article  PubMed  Google Scholar 

Kokkinos P, Faselis C, Samuel IBH, Pittaras A, Doumas M, Murphy R, et al. Cardiorespiratory fitness and mortality risk across the spectra of age, race, and sex. J Am Coll Cardiol. 2022;80:598–609.

Article  PubMed  Google Scholar 

Svedenkrans J, Kowalski J, Norman M, Bohlin K. Low exercise capacity increases the risk of low cognitive function in healthy young men born preterm: a population-based cohort study. PLoS ONE. 2016;11:1–12.

Article  Google Scholar 

Martinez-Zamora MD, Valenzuela PL, Díez IE, Martínez-de-Quel Ó. Influence of preterm birth on physical fitness in early childhood. Eur J Sport Sci. 2023;23(11):2129–38. https://doi.org/10.1080/17461391.2023.2207082.

Article  PubMed  Google Scholar 

Smith L, Van Asperen P, McKay K, Selvadurai H, Fitzgerald D. Reduced exercise capacity in children born very preterm. Pediatrics. 2008;122:e287–93.

Article  PubMed  Google Scholar 

Edwards MO, Kotecha SJ, Lowe J, Watkins WJ, Henderson AJ, Kotecha S. Effect of preterm birth on exercise capacity: a systematic review and meta-analysis. Pediatr Pulmonol. 2015;50:293–301.

Article  PubMed  Google Scholar 

Dodds R, Denison HJ, Ntani G, Cooper R, Cooper C, Sayer AA, et al. Birth weight and muscle strength: a systematic review and meta-analysis. J Nutr Heal Aging. 2012;16:609–15.

Article  CAS  Google Scholar 

Poole G, Harris C, Greenough A. Exercise capacity in very low birth weight adults: a systematic review and meta-analysis. Children. 2023;10:1–15.

Article  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2020;2021:372.

Google Scholar 

Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch V (editors). Cochrane handbook for systematic reviews of interventions version 6.4. Cochrane Database Syst Rev; 2023. Available from https://training.cochrane.org/handbook.

Dziuba E, Drzał-Grabiec J, Truszczyńska-Baszak A, Guzek K, Zajkiewicz K. Balance in children born prematurely currently aged 6–7. Biomed Hum Kinet. 2017;9:181–6.

Article  Google Scholar 

Odd DE, Lingam R, Emond A, Whitelaw A. Movement outcomes of infants born moderate and late preterm. Acta Paediatr Int J Paediatr. 2013;102:876–82.

Article  Google Scholar 

Ahlqvist VH, Persson M, Ortega FB, Tynelius P, Magnusson C, Berglind D. Birth weight and grip strength in young Swedish males: a longitudinal matched sibling analysis and across all body mass index ranges. Sci Rep. 2019;9:1–8.

Article  CAS  Google Scholar 

Ahlqvist V, Persson M, Ortega F, Tynelius P, Magnusson C, Berglind D. Birth weight and cardiorespiratory fitness among young men born at term: the role of genetic and environmental factors. J Am Heart Assoc. 2020;9: e014290.

Article  PubMed  PubMed Central  Google Scholar 

Moura-Dos-Santos M, Wellington-Barros J, Brito-Almeida M, Manhães-de-Castro R, Maia J, Góis LC. Permanent deficits in handgrip strength and running speed performance in low birthweight children. Am J Hum Biol. 2013;25:58–62.

Article  PubMed  Google Scholar 

Burns Y, Danks M, O’Callaghan M, Gray P, Cooper D, Poulsen L, et al. Motor coordination difficulties and physical fitness of extremely-low-birthweight children. Dev Med Child Neurol. 2009;51:136–42.

Article  PubMed  Google Scholar 

O’Dea CA, Logie K, Wilson AC, Pillow JJ, Murray C, Banton G, et al. Lung abnormalities do not influence aerobic capacity in school children born preterm. Eur J Appl Physiol. 2021;121:489–98. https://doi.org/10.1007/s00421-020-04530-2.

Article  PubMed  Google Scholar 

Svien L. Health-related fitness of seven-to-10-year-old children with histories of preterm birth. Pediatr Phys Ther. 2003;15(2):74–83.

Article  PubMed  Google Scholar 

Wells GA, Shea B, O’Connel D et al. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford htm. 1 February 2009; 2009.

Kriemler S, Keller H, Saigal S, Bar-Or O. Aerobic and lung performance in premature children with and without chronic lung disease of prematurity. Clin J Sport Med. 2005;15:349–55.

Article  PubMed  Google Scholar 

Clemm H, Røksund O, Thorsen E, Eide G, Markestad T, Halvorsen T. Aerobic capacity and exercise performance in young people born extremely preterm. Pediatrics. 2012;129:e97–105.

Article  PubMed  Google Scholar 

Clemm H, Vollsæter M, Røksund O, Markestad T, Halvorsen T. Adolescents who were born extremely preterm demonstrate modest decreases in exercise capacity. Acta Paediatr Int J Paediatr. 2015;104:1174–81.

Article  CAS  Google Scholar 

Clemm H, Vollsæter M, Røksund O, Eide G, Markestad T, Halvorsen T. Exercise capacity after extremely preterm birth: development from adolescence to adulthood. Ann Am Thorac Soc. 2014;11:537–45.

Article  PubMed  Google Scholar 

Tchamo M, Santos M, Almeida M, Silva A, Leandro C. Physical fitness and birth weight in young men from Maputo City, Mozambique. Rev Bras Med do Esporte. 2016;22:66–70.

留言 (0)

沒有登入
gif