Lactobacillus acidophilus KBL409 protects against kidney injury via improving mitochondrial function with chronic kidney disease

Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Schautz B, Later W, Heymsfield SB, Muller MJ (2010) Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am J Clin Nutr 92(6):1369–1377. https://doi.org/10.3945/ajcn.2010.29885

Article  CAS  PubMed  PubMed Central  Google Scholar 

Che R, Yuan Y, Huang S, Zhang A (2014) Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 306(4):F367-378. https://doi.org/10.1152/ajprenal.00571.2013

Article  CAS  PubMed  Google Scholar 

Galvan DL, Green NH, Danesh FR (2017) The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int 92(5):1051–1057. https://doi.org/10.1016/j.kint.2017.05.034

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coughlan MT, Nguyen TV, Penfold SA, Higgins GC, Thallas-Bonke V, Tan SM, Van Bergen NJ, Sourris KC, Harcourt BE, Thorburn DR, Trounce IA, Cooper ME, Forbes JM (2016) Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes. Clin Sci (Lond) 130(9):711–720. https://doi.org/10.1042/cs20150838

Article  CAS  PubMed  Google Scholar 

Zhan M, Brooks C, Liu FY, Sun L, Dong Z (2013) Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int 83(4):568–581. https://doi.org/10.1038/ki.2012.441

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang C, Cai J, Dong Z (2016) Mitochondrial dysfunction in obesity-related kidney disease: a novel therapeutic target. Kidney Int 90(5):930–933. https://doi.org/10.1016/j.kint.2016.07.045

Article  CAS  PubMed  Google Scholar 

Szeto HH (2017) Pharmacologic approaches to improve mitochondrial function in AKI and CKD. J Am Soc Nephrol 28(10):2856–2865. https://doi.org/10.1681/ASN.2017030247

Article  CAS  PubMed  PubMed Central  Google Scholar 

Forbes JM, Thorburn DR (2018) Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol 14(5):291–312. https://doi.org/10.1038/nrneph.2018.9

Article  CAS  PubMed  Google Scholar 

Bhatia D, Capili A, Choi ME (2020) Mitochondrial dysfunction in kidney injury, inflammation, and disease: potential therapeutic approaches. Kidney Res Clin Pract 39(3):244–258. https://doi.org/10.23876/j.krcp.20.082

Dare AJ, Bolton EA, Pettigrew GJ, Bradley JA, Saeb-Parsy K, Murphy MP (2015) Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol 5:163–168. https://doi.org/10.1016/j.redox.2015.04.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park CW, Zhang Y, Zhang X, Wu J, Chen L, Cha DR, Su D, Hwang MT, Fan X, Davis L, Striker G, Zheng F, Breyer M, Guan Y (2006) PPARalpha agonist fenofibrate improves diabetic nephropathy in db/db mice. Kidney Int 69(9):1511–1517. https://doi.org/10.1038/sj.ki.5000209

Article  CAS  PubMed  Google Scholar 

Yang HC, Deleuze S, Zuo Y, Potthoff SA, Ma LJ, Fogo AB (2009) The PPARgamma agonist pioglitazone ameliorates aging-related progressive renal injury. J Am Soc Nephrol 20(11):2380–2388. https://doi.org/10.1681/ASN.2008111138

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ayanga BA, Badal SS, Wang Y, Galvan DL, Chang BH, Schumacker PT, Danesh FR (2016) Dynamin-related protein 1 deficiency improves mitochondrial fitness and protects against progression of diabetic nephropathy. J Am Soc Nephrol 27(9):2733–2747. https://doi.org/10.1681/ASN.2015101096

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D (2015) Role of the normal gut microbiota. World J Gastroenterol 21(29):8787–8803. https://doi.org/10.3748/wjg.v21.i29.8787

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koppe L, Mafra D, Fouque D (2015) Probiotics and chronic kidney disease. Kidney Int 88(5):958–966. https://doi.org/10.1038/ki.2015.255

Article  CAS  PubMed  Google Scholar 

Lau WL, Savoj J, Nakata MB, Vaziri ND (2018) Altered microbiome in chronic kidney disease: systemic effects of gut-derived uremic toxins. Clin Sci (Lond) 132(5):509–522. https://doi.org/10.1042/CS20171107

Article  CAS  PubMed  Google Scholar 

Andrade-Oliveira V, Amano MT, Correa-Costa M, Castoldi A, Felizardo RJ, de Almeida DC, Bassi EJ, Moraes-Vieira PM, Hiyane MI, Rodas AC, Peron JP, Aguiar CF, Reis MA, Ribeiro WR, Valduga CJ, Curi R, Vinolo MA, Ferreira CM, Câmara NO (2015) Gut bacteria products prevent AKI induced by ischemia-reperfusion. J Am Soc Nephrol 26(8):1877–1888. https://doi.org/10.1681/asn.2014030288

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang J, Lim SY, Ko YS, Lee HY, Oh SW, Kim MG, Cho WY, Jo SK (2019) Intestinal barrier disruption and dysregulated mucosal immunity contribute to kidney fibrosis in chronic kidney disease. Nephrol Dial Transplant 34(3):419–428. https://doi.org/10.1093/ndt/gfy172

Article  CAS  PubMed  Google Scholar 

Iwashita Y, Ohya M, Yashiro M, Sonou T, Kawakami K, Nakashima Y, Yano T, Iwashita Y, Mima T, Negi S, Kubo K, Tomoda K, Odamaki T, Shigematsu T (2018) Dietary changes involving bifidobacterium longum and other nutrients delays chronic kidney disease progression. Am J Nephrol 47(5):325–332. https://doi.org/10.1159/000488947

Article  CAS  PubMed  Google Scholar 

Yoshifuji A, Wakino S, Irie J, Tajima T, Hasegawa K, Kanda T, Tokuyama H, Hayashi K, Itoh H (2016) Gut Lactobacillus protects against the progression of renal damage by modulating the gut environment in rats. Nephrol Dial Transplant 31(3):401–412. https://doi.org/10.1093/ndt/gfv353

Article  CAS  PubMed  Google Scholar 

Wei M, Wang Z, Liu H, Jiang H, Wang M, Liang S, Shi K, Feng J (2014) Probiotic Bifidobacterium animalis subsp. lactis Bi-07 alleviates bacterial translocation and ameliorates microinflammation in experimental uraemia. Nephrology (Carlton) 19(8):500–506. https://doi.org/10.1111/nep.12272

Xia B, Yu J, He T, Liu X, Su J, Wang M, Wang J, Zhu Y (2020) Lactobacillus johnsonii L531 ameliorates enteritis via elimination of damaged mitochondria and suppression of SQSTM1-dependent mitophagy in a Salmonella infantis model of piglet diarrhea. Faseb j 34(2):2821–2839. https://doi.org/10.1096/fj.201901445RRR

Article  CAS  PubMed  Google Scholar 

Tunapong W, Apaijai N, Yasom S, Tanajak P, Wanchai K, Chunchai T, Kerdphoo S, Eaimworawuthikul S, Thiennimitr P, Pongchaidecha A, Lungkaphin A, Pratchayasakul W, Chattipakorn SC, Chattipakorn N (2018) Chronic treatment with prebiotics, probiotics and synbiotics attenuated cardiac dysfunction by improving cardiac mitochondrial dysfunction in male obese insulin-resistant rats. Eur J Nutr 57(6):2091–2104. https://doi.org/10.1007/s00394-017-1482-3

Article  CAS  PubMed  Google Scholar 

d’Ettorre G, Rossi G, Scagnolari C, Andreotti M, Giustini N, Serafino S, Schietroma I, Scheri GC, Fard SN, Trinchieri V, Mastromarino P, Selvaggi C, Scarpona S, Fanello G, Fiocca F, Ceccarelli G, Antonelli G, Brenchley JM, Vullo V (2017) Probiotic supplementation promotes a reduction in T-cell activation, an increase in Th17 frequencies, and a recovery of intestinal epithelium integrity and mitochondrial morphology in ART-treated HIV-1-positive patients. Immun Inflamm Dis 5(3):244–260. https://doi.org/10.1002/iid3.160

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren T, Zhu L, Shen Y, Mou Q, Lin T, Feng H (2019) Protection of hepatocyte mitochondrial function by blueberry juice and probiotics via SIRT1 regulation in non-alcoholic fatty liver disease. Food Funct 10(3):1540–1551. https://doi.org/10.1039/c8fo02298d

Article  CAS  PubMed  Google Scholar 

Kim WK, Han DH, Jang YJ, Park S, Jang SJ, Lee G, Han HS, Ko G (2021) Alleviation of DSS-induced colitis via Lactobacillus acidophilus treatment in mice. Food Funct 12(1):340–350. https://doi.org/10.1039/d0fo01724h

Article  CAS  PubMed  Google Scholar 

Kim H, Nam BY, Park J, Song S, Kim WK, Lee K, Nam TW, Park JT, Yoo TH, Kang SW, Ko G, Han SH (2022) Lactobacillus acidophilus KBL409 reduces kidney fibrosis via immune modulatory effects in mice with chronic kidney disease. Mol Nutr Food Res:e2101105. https://doi.org/10.1002/mnfr.202101105

Murase M, Kimura Y, Nagata Y (1995) Determination of portal short-chain fatty acids in rats fed various dietary fibers by capillary gas chromatography. J Chromatogr B Biomed Appl 664(2):415–420. https://doi.org/10.1016/0378-4347(94)00491-m

Article  CAS  PubMed  Google Scholar 

Li YJ, Chen X, Kwan TK, Loh YW, Singer J, Liu Y, Ma J, Tan J, Macia L, Mackay CR, Chadban SJ, Wu H (2020) Dietary fiber protects against diabetic nephropathy through short-chain fatty acid-mediated activation of G protein-coupled receptors GPR43 and GPR109A. J Am Soc Nephrol 31(6):1267–1281. https://doi.org/10.1681/ASN.2019101029

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang W, Guo HL, Deng X, Zhu TT, Xiong JF, Xu YH, Xu Y (2017) Short-chain fatty acids inhibit oxidative stress and inflammation in mesangial cells induced by high glucose and lipopolysaccharide. Exp Clin Endocrinol Diabetes 125(2):98–105. https://doi.org/10.1055/s-0042-121493

Article  CAS  PubMed  Google Scholar 

Matsumoto N, Riley S, Fraser D, Al-Assaf S, Ishimura E, Wolever T, Phillips GO, Phillips AO (2006) Butyrate modulates TGF-beta1 generation and function: potential renal benefit for Acacia(sen) SUPERGUM (gum arabic)? Kidney Int 69(2):257–265. https://doi.org/10.1038/sj.ki.5000028

Article  CAS  PubMed  Google Scholar 

Mollica MP, Mattace Raso G, Cavaliere G, Trinchese G, De Filippo C, Aceto S, Prisco M, Pirozzi C, Di Guida F, Lama A, Crispino M, Tronino D, Di Vaio P, Berni Canani R, Calignano A, Meli R (2017) Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice. Diabetes 66(5):1405–1418. https://doi.org/10.2337/db16-0924

Article 

留言 (0)

沒有登入
gif