Small molecule inhibitors targeting m6A regulators

Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 1974;71(10):3971–5. https://doi.org/10.1073/pnas.71.10.3971.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18(1):176. https://doi.org/10.1186/s12943-019-1109-9.

Article  PubMed  PubMed Central  Google Scholar 

Kumar S, Nagpal R, Kumar A, Ashraf MU, Bae YS. Immunotherapeutic potential of m6A-modifiers and MicroRNAs in controlling acute myeloid leukaemia. Biomedicines. 2021;9(6):690. https://doi.org/10.3390/biomedicines9060690.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Geng X, Li Q, et al. m6A modification in RNA: biogenesis, functions and roles in gliomas. J Exp Clin Cancer Res CR. 2020;39(1):192. https://doi.org/10.1186/s13046-020-01706-8.

Article  CAS  PubMed  Google Scholar 

Singh B, Kinne HE, Milligan RD, Washburn LJ, Olsen M, Lucci A. Important role of FTO in the survival of rare panresistant triple-negative inflammatory breast cancer cells facing a severe metabolic challenge. PLoS ONE. 2016;11(7):e0159072. https://doi.org/10.1371/journal.pone.0159072.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen F, Chen Z, Guan T, et al. N6 -methyladenosine regulates mRNA stability and translation efficiency of KRT7 to promote breast cancer lung metastasis. Cancer Res. 2021;81(11):2847–60. https://doi.org/10.1158/0008-5472.CAN-20-3779.

Article  PubMed  Google Scholar 

Gao R, Ye M, Liu B, Wei M, Ma D, Dong K. m6A modification: a double-edged sword in tumor development. Front Oncol. 2021;11:679367. https://doi.org/10.3389/fonc.2021.679367.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Xu B, Shi J. N6-methyladenosine METTL3 promotes the breast cancer progression via targeting Bcl-2. Gene. 2020;722:144076. https://doi.org/10.1016/j.gene.2019.144076.

Article  CAS  PubMed  Google Scholar 

Li Z, Weng H, Su R, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell. 2017;31(1):127–41. https://doi.org/10.1016/j.ccell.2016.11.017.

Article  CAS  PubMed  Google Scholar 

Yankova E, Blackaby W, Albertella M, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593(7860):597–601. https://doi.org/10.1038/s41586-021-03536-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du Y, Yuan Y, Xu L, et al. Discovery of METTL3 small molecule inhibitors by virtual screening of natural products. Front Pharmacol. 2022;13:878135. https://doi.org/10.3389/fphar.2022.878135.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moroz-Omori EV, Huang D, Kumar Bedi R, et al. METTL3 inhibitors for epitranscriptomic modulation of cellular processes. ChemMedChem. 2021;16(19):3035–43. https://doi.org/10.1002/cmdc.202100291.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huff S, Kummetha IR, Zhang L, et al. Rational design and optimization of m6A-RNA demethylase FTO inhibitors as anticancer agents. J Med Chem. 2022;65(16):10920–37. https://doi.org/10.1021/acs.jmedchem.1c02075.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie G, Wu XN, Ling Y, et al. A novel inhibitor of N 6-methyladenosine demethylase FTO induces mRNA methylation and shows anti-cancer activities. Acta Pharm Sinica B. 2022;12(2):853–66. https://doi.org/10.1016/j.apsb.2021.08.028.

Article  CAS  Google Scholar 

Huang Y, Su R, Sheng Y, et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell. 2019;35(4):677-691.e10. https://doi.org/10.1016/j.ccell.2019.03.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Su R, Dong L, Li C, et al. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling. Cell. 2018;172(1–2):90-105.e23. https://doi.org/10.1016/j.cell.2017.11.031.

Article  CAS  PubMed  Google Scholar 

Micaelli M, Dalle Vedove A, Cerofolini L, et al. Small-Molecule Ebselen Binds to YTHDF Proteins Interfering with the Recognition of N 6-Methyladenosine-Modified RNAs. ACS Pharmacol Trans Sci. 2022;5(10):872–91. https://doi.org/10.1021/acsptsci.2c00008.

Article  CAS  Google Scholar 

Lee JH, Kim S, Jin MS, Kim YC. Discovery of substituted indole derivatives as allosteric inhibitors of m6 A-RNA methyltransferase, METTL3-14 complex. Drug Dev Res. 2022;83(3):783–99. https://doi.org/10.1002/ddr.21910.

Article  CAS  PubMed  Google Scholar 

Chen B, Ye F, Yu L, et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc. 2012;134(43):17963–71. https://doi.org/10.1021/ja3064149.

Article  CAS  PubMed  Google Scholar 

Liu Y, Liang G, Xu H, et al. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab. 2021;33(6):1221-1233.e11. https://doi.org/10.1016/j.cmet.2021.04.001.

Article  CAS  PubMed  Google Scholar 

Liu Z, Duan Z, Zhang D, et al. Structure-activity relationships and antileukemia effects of the tricyclic benzoic acid FTO inhibitors. J Med Chem. 2022;65(15):10638–54. https://doi.org/10.1021/acs.jmedchem.2c00848.

Article  CAS  PubMed  Google Scholar 

Cheng L, Zhang X, Huang YZ, et al. Metformin exhibits antiproliferation activity in breast cancer via miR-483-3p/METTL3/m6A/p21 pathway. Oncogenesis. 2021;10(1):7. https://doi.org/10.1038/s41389-020-00290-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang J, Yin P. Structural insights into N 6 -methyladenosine (m 6 A) modification in the transcriptome. Genom Proteom Bioinform. 2018;16(2):85–98. https://doi.org/10.1016/j.gpb.2018.03.001.

Article  CAS  Google Scholar 

Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–5. https://doi.org/10.1038/nchembio.1432.

Article  CAS  PubMed  Google Scholar 

Wang X, Feng J, Xue Y, et al. Structural basis of N-6-adenosine methylation by the METTL3-METTL14 complex. Nature. 2016;534(7608):575. https://doi.org/10.1038/nature18298.

Article  CAS  PubMed  Google Scholar 

Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 2016;63(2):306–17. https://doi.org/10.1016/j.molcel.2016.05.041.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He PC, Wei J, Dou X, et al. Exon architecture controls mRNA m6A suppression and gene expression. Science (New York, NY). 2023;379(6633):677–82. https://doi.org/10.1126/science.abj9090.

Article  CAS  Google Scholar 

Ping X, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24:177–89. https://doi.org/10.1038/cr.2014.3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertero A, Brown S, Madrigal P, et al. The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency. Nature. 2018;555(7695):256–9. https://doi.org/10.1038/nature25784.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang H, Weng H, Zhou K, et al. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature. 2019;567(7748):414–9. https://doi.org/10.1038/s41586-019-1016-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patil DP, Chen CK, Pickering BF, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 2016;537(7620):369. https://doi.org/10.1038/nature19342.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knuckles P, Lence T, Haussmann IU, et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m(6)A machinery component Wtap/Fl(2)d. Genes Dev. 2018;32(5–6):415–29. https://doi.org/10.1101/gad.309146.117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif