Hyaluronan in mesenchymal stromal cell lineage differentiation from human pluripotent stem cells: application in serum free culture

Toole B. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer. 2004;4:528–39. https://doi.org/10.1038/nrc1391.

Article  CAS  PubMed  Google Scholar 

Cowman MK, Lee HG, Schwertfeger KL, McCarthy JB, Turley EA. The content and size of hyaluronan in biological fluids and tissues. Front Immunol. 2015;2(6):261. https://doi.org/10.3389/fimmu.2015.00261.

Article  CAS  Google Scholar 

Solis MA, Chen YH, Wong TY, Bittencourt VZ, Lin YC, Huang LL. Hyaluronan regulates cell behavior: a potential niche matrix for stem cells. Biochem Res Int. 2012;2012:346972. https://doi.org/10.1155/2012/346972.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonafè F, Govoni M, Giordano E, Caldarera CM, Guarnieri C, Muscari C. Hyaluronan and cardiac regeneration. J Biomed Sci. 2014;30(21):100. https://doi.org/10.1186/s12929-014-0100-4.

Article  CAS  Google Scholar 

Kim IL, Mauck RL, Burdick JA. Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials. 2011;32(34):8771–82. https://doi.org/10.1016/j.biomaterials.2011.08.073.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pardue EL, Ibrahim S, Ramamurthi A. Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering. Organogenesis. 2008;4(4):203–14. https://doi.org/10.4161/org.4.4.6926.

Article  PubMed  PubMed Central  Google Scholar 

Su W, Matsumoto S, Sorg B, Sherman LS. Distinct roles for hyaluronan in neural stem cell niches and perineuronal nets. Matrix Biol. 2019;78–79:272–83. https://doi.org/10.1016/j.matbio.2018.01.022.

Article  CAS  PubMed  Google Scholar 

Zöller M. CD44, hyaluronan, the hematopoietic stem cell, and leukemia-initiating cells. Front Immunol. 2015. https://doi.org/10.3389/fimmu.2015.00235.

Article  PubMed  PubMed Central  Google Scholar 

Zhai P, Peng X, Li B, Liu Y, Sun H, Li X. The application of hyaluronic acid in bone regeneration. Int J Biol Macromol. 2020;151:1224–39. https://doi.org/10.1016/j.ijbiomac.2019.10.169.

Article  CAS  PubMed  Google Scholar 

Peters A, Sherman LS. Diverse roles for hyaluronan and hyaluronan receptors in the developing and adult nervous system. Int J Mol Sci. 2020;21(17):5988. https://doi.org/10.3390/ijms21175988.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stenson WF, Ciorba MA. Nonmicrobial activation of TLRs controls intestinal growth, wound repair, and radioprotection. Front Immunol. 2021;21(11):617510. https://doi.org/10.3389/fimmu.2020.617510.

Article  CAS  Google Scholar 

Brown JJ, Papaioannou VE. Ontogeny of hyaluronan secretion during early mouse development. Development. 1993;117:483–92.

Article  CAS  PubMed  Google Scholar 

Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001;19(10):971–4. https://doi.org/10.1038/nbt1001-971.

Article  CAS  PubMed  Google Scholar 

Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A. 2007;104(27):11298–303. https://doi.org/10.1073/pnas.0703723104.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu K, Narayanan K, Lee F, Bae KH, Gao S, Kurisawa M. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D. Acta Biomater. 2015;24:159–71. https://doi.org/10.1016/j.actbio.2015.06.026.

Article  CAS  PubMed  Google Scholar 

Miura T, Yuasa N, Ota H, Habu M, Kawano M, Nakayama F, Nishihara S. Highly sulfated hyaluronic acid maintains human induced pluripotent stem cells under feeder-free and bFGF-free conditions. Biochem Biophys Res Commun. 2019;518(3):506–12. https://doi.org/10.1016/j.bbrc.2019.08.082.

Article  CAS  PubMed  Google Scholar 

De Sousa PA. Culture of mammalian pluripotent stem cells in the presence of hyaluronan induces differentiation into multi-lineage progenitor cells. United States Patent No. US 8,110,400 B2. 2012.

Velugotla S, Pells S, Mjoseng H, Duffy CR, Smith S, De Sousa PA, Pethig R. Dielectrophoresis based discrimination of human embryonic stem cells from differentiating derivatives. Biomicrofluidics. 2012;6:044113. https://doi.org/10.1063/1.4771316.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harkness L, Mahmood A, Ditzel N, Abdallah BM, Nygaard JV, Kassem M. Selective isolation and differentiation of a stromal population of human embryonic stem cells with osteogenic potential. Bone. 2011;48(2):231–41. https://doi.org/10.1016/j.bone.2010.09.023.

Article  CAS  PubMed  Google Scholar 

De Sousa PA, Ritchie D, Green A, Chandran S, Knight R, Head MW. Renewed assessment of the risk of emergent advanced cell therapies to transmit neuroproteinopathies. Acta Neuropathol. 2019;137(3):363–77. https://doi.org/10.1007/s00401-018-1941-9.

Article  CAS  PubMed  Google Scholar 

De Sousa PA, Tye BJ, Bruce K, Dand P, Russell G, Collins DM, Greenshields A, McDonald K, Bradburn H, Canham MA, Kunath T, Downie JM, Bateman M, Courtney A. Derivation of the clinical grade human embryonic stem cell line RCe013-A (RC-9). Stem Cell Res. 2016;17(1):36–41. https://doi.org/10.1016/j.scr.2016.04.020.

Article  CAS  PubMed  Google Scholar 

De Sousa PA, Downie JM, Tye BJ, Bruce K, Dand P, Dhanjal S, Serhal P, Harper J, Turner M, Bateman M. Development and production of good manufacturing practice grade human embryonic stem cell lines as source material for clinical application. Stem Cell Res. 2016;17(2):379–90. https://doi.org/10.1016/j.scr.2016.08.011.

Article  CAS  PubMed  Google Scholar 

Corradetti B, Taraballi F, Martinez JO, et al. Hyaluronic acid coatings as a simple and efficient approach to improve MSC homing toward the site of inflammation. Sci Rep. 2017;7:7991. https://doi.org/10.1038/s41598-017-08687-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daigneault M, Preston JA, Marriott HM, Whyte MKB, Dockrell DH. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE. 2010;5(1):e8668. https://doi.org/10.1371/journal.pone.0008668.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee I. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother. 1996;5(3):213–26. https://doi.org/10.1089/scd.1.1996.5.213.

Article  CAS  PubMed  Google Scholar 

Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36(8):2628–9. https://doi.org/10.1093/bioinformatics/btz931.

Article  CAS  PubMed  Google Scholar 

Bianco P, Gehron-Robey P, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts and assays. Cell Stem Cell. 2008;2(4):313–9. https://doi.org/10.1016/j.stem.2008.03.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robinson SN, Simmons PJ, Yang H, Alousi AM, Marcos de Lima J, Shpall EJ. Mesenchymal stem cells in ex vivo cord blood expansion. Best Pract Res Clin Haematol. 2011;24(1):83–92. https://doi.org/10.1016/j.beha.2010.11.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rasmusson I, Ringdén O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res. 2005;305(1):33–41. https://doi.org/10.1016/j.yexcr.2004.12.013.

Article  CAS  PubMed  Google Scholar 

Pineault N, Abu-Khader A. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp Hematol. 2015;43:498–513.

Article  PubMed  Google Scholar 

Haddad R, Saldanha-Araujo F. Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: What do we know so far? 2014. https://doi.org/10.1155/2014/216806,

Lu D, Xu Y, Zhang Q. Mesenchymal stem cell-macrophage crosstalk and maintenance of inflammatory microenvironment homeostasis. Front Cell Dev Biol. 2021;9:681171. https://doi.org/10.3389/fcell.2021.681171.

Article  PubMed  PubMed Central  Google Scholar 

von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33(Database issue):D433–7. https://doi.org/10.1093/nar/gki005.

Article  CAS  Google Scholar 

Liu J, Gao J, Liang Z, et al. Mesenchymal stem cells and their microenvironment. Stem Cell Res Ther. 2022;13:429. https://doi.org/10.1186/s13287-022-02985-y.

Article  CAS 

留言 (0)

沒有登入
gif