Pannexins in the musculoskeletal system: new targets for development and disease progression

Allen, M. R. & Burr, D. B. in Basic and Applied Bone Biology (eds David B. Burr & Matthew R. Allen) 75–90 (Academic Press, 2014).

Plotkin, L. I. & Bellido, T. Beyond gap junctions: connexin43 and bone cell signaling. Bone 52, 157–166 (2013).

Article  CAS  PubMed  Google Scholar 

Stains, J. P. & Civitelli, R. Gap junctions in skeletal development and function. Biochim. Biophys. Acta 1719, 69–81 (2005).

Article  CAS  PubMed  Google Scholar 

Bellido, T., Plotkin, L. I. & Bruzzaniti, A. in Basic and Applied Bone Biology (eds David B. Burr & Matthew R. Allen) 27–45 (Academic Press, 2014).

Sáez, J. C., Cisterna, B. A., Vargas, A. & Cardozo, C. P. Regulation of pannexin and connexin channels and their functional role in skeletal muscles. Cell Mol. Life Sci. 72, 2929–2935 (2015).

Article  PubMed  Google Scholar 

Tomei, E. J. & Wolniak, S. M. Kinesin-2 and kinesin-9 have atypical functions during ciliogenesis in the male gametophyte of Marsilea vestita. BMC Cell Biol. 17, 29 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Bhat, E. A. & Sajjad, N. Human Pannexin 1 channel: Insight in structure-function mechanism and its potential physiological roles. Mol. Cell Biochem. 476, 1529–1540 (2021).

Article  CAS  PubMed  Google Scholar 

Pelegrin, P. & Surprenant, A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J. 25, 5071–5082 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scemes, E., Suadicani, S. O., Dahl, G. & Spray, D. C. Connexin and pannexin mediated cell-cell communication. Neuron Glia Biol. 3, 199–208 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Alhouayek, M., Sorti, R., Gilthorpe, J. D. & Fowler, C. J. Role of pannexin-1 in the cellular uptake, release and hydrolysis of anandamide by T84 colon cancer cells. Sci. Rep. 9, 7622 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Chekeni, F. B. et al. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467, 863–867 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moorer, M. C. et al. Defective signaling, osteoblastogenesis and bone remodeling in a mouse model of connexin 43 C-terminal truncation. J. Cell Sci. 130, 531–540 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Narahari, A. K. et al. ATP and large signaling metabolites flux through caspase-activated Pannexin 1 channels. Elife 10, e64787 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pacheco-Costa, R. et al. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain. Bone 81, 632–643 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dubyak, G. R. Both sides now: multiple interactions of ATP with pannexin-1 hemichannels. Focus on “A permeant regulating its permeation pore: inhibition of pannexin 1 channels by ATP”. Am. J. Physiol. Cell Physiol. 296, C235–C241 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Panchin, Y. V. Evolution of gap junction proteins–the pannexin alternative. J. Exp. Biol. 208, 1415–1419 (2005).

Article  CAS  PubMed  Google Scholar 

Panchin, Y. et al. A ubiquitous family of putative gap junction molecules. Curr. Biol. 10, R473–R474 (2000).

Article  CAS  PubMed  Google Scholar 

Donahue, H. J., Qu, R. W. & Genetos, D. C. Joint diseases: from connexins to gap junctions. Nat. Rev. Rheumatol. 14, 42–51 (2017).

Article  PubMed  Google Scholar 

Bond, S. R. et al. Pannexin 3 is a novel target for Runx2, expressed by osteoblasts and mature growth plate chondrocytes. J. Bone Min. Res. 26, 2911–2922 (2011).

Article  CAS  Google Scholar 

Penuela, S. et al. Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J. Cell Sci. 120, 3772–3783 (2007).

Article  CAS  PubMed  Google Scholar 

Xiao, Z. et al. Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts. J. Cell Physiol. 210, 325–335 (2007).

Article  CAS  PubMed  Google Scholar 

Baranova, A. et al. The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 83, 706–716 (2004).

Article  CAS  PubMed  Google Scholar 

Harber, P. & McCoy, J. M. Predicate calculus, artificial intelligence, and workers’ compensation. J. Occup. Med. 31, 484–489 (1989).

CAS  PubMed  Google Scholar 

Riquelme, M. A. et al. The ATP required for potentiation of skeletal muscle contraction is released via pannexin hemichannels. Neuropharmacology 75, 594–603 (2013).

Article  CAS  PubMed  Google Scholar 

Langlois, S. et al. Pannexin 1 and pannexin 3 channels regulate skeletal muscle myoblast proliferation and differentiation. J. Biol. Chem. 289, 30717–30731 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buvinic, S. et al. ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle. J. Biol. Chem. 284, 34490–34505 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cea, L. A. et al. De novo expression of connexin hemichannels in denervated fast skeletal muscles leads to atrophy. Proc. Natl. Acad. Sci. USA 110, 16229–16234 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanjanamekanant, K., Luckprom, P. & Pavasant, P. P2X7 receptor-Pannexin1 interaction mediates stress-induced interleukin-1 beta expression in human periodontal ligament cells. J. Periodontal. Res. 49, 595–602 (2014).

Article  CAS  PubMed  Google Scholar 

Vogt, A., Hormuzdi, S. G. & Monyer, H. Pannexin1 and Pannexin2 expression in the developing and mature rat brain. Brain Res. Mol. Brain Res. 141, 113–120 (2005).

Article  CAS  PubMed  Google Scholar 

Ishikawa, M. et al. Pannexin 3 functions as an ER Ca2+ channel, hemichannel, and gap junction to promote osteoblast differentiation. J. Cell Biol. 193, 1257–1274 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iwamoto, T. et al. Pannexin 3 regulates proliferation and differentiation of odontoblasts via its hemichannel activities. PLoS One 12, e0177557 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Le Vasseur, M., Lelowski, J., Bechberger, J. F., Sin, W. C. & Naus, C. C. Pannexin 2 protein expression is not restricted to the CNS. Front. Cell Neurosci. 8, 392 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Pillon, N. J. et al. Nucleotides released from palmitate-challenged muscle cells through pannexin-3 attract monocytes. Diabetes 63, 3815–3826 (2014).

Article  CAS  PubMed  Google Scholar 

Deng, Z. et al. Cryo-EM structures of the ATP release channel pannexin 1. Nat. Struct. Mol. Biol. 27, 373–381 (2020).

Article  CAS  PubMed  Google Scholar 

Jin, Q. et al. Cryo-EM structures of human pannexin 1 channel. Cell Res. 30, 449–451 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Michalski, K. et al. The Cryo-EM structure of pannexin 1 reveals unique motifs for ion selection and inhibition. Elife 9, e54670 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mou, L. et al. Structural basis for gating mechanism of Pannexin 1 channel. Cell Res. 30, 452–454 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Qu, R. et al. Cryo-EM structure of human heptameric Pannexin 1 channel. Cell Res. 30, 446–448 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Ruan, Z., Orozco, I. J., Du, J. & Lu, W. Structures of human pannexin 1 reveal ion pathways and mechanism of gating. Nature 584, 646–651 (2020).

Article  CAS 

留言 (0)

沒有登入
gif