Allen, M. R. & Burr, D. B. in Basic and Applied Bone Biology (eds David B. Burr & Matthew R. Allen) 75–90 (Academic Press, 2014).
Plotkin, L. I. & Bellido, T. Beyond gap junctions: connexin43 and bone cell signaling. Bone 52, 157–166 (2013).
Article CAS PubMed Google Scholar
Stains, J. P. & Civitelli, R. Gap junctions in skeletal development and function. Biochim. Biophys. Acta 1719, 69–81 (2005).
Article CAS PubMed Google Scholar
Bellido, T., Plotkin, L. I. & Bruzzaniti, A. in Basic and Applied Bone Biology (eds David B. Burr & Matthew R. Allen) 27–45 (Academic Press, 2014).
Sáez, J. C., Cisterna, B. A., Vargas, A. & Cardozo, C. P. Regulation of pannexin and connexin channels and their functional role in skeletal muscles. Cell Mol. Life Sci. 72, 2929–2935 (2015).
Tomei, E. J. & Wolniak, S. M. Kinesin-2 and kinesin-9 have atypical functions during ciliogenesis in the male gametophyte of Marsilea vestita. BMC Cell Biol. 17, 29 (2016).
Article PubMed PubMed Central Google Scholar
Bhat, E. A. & Sajjad, N. Human Pannexin 1 channel: Insight in structure-function mechanism and its potential physiological roles. Mol. Cell Biochem. 476, 1529–1540 (2021).
Article CAS PubMed Google Scholar
Pelegrin, P. & Surprenant, A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J. 25, 5071–5082 (2006).
Article CAS PubMed PubMed Central Google Scholar
Scemes, E., Suadicani, S. O., Dahl, G. & Spray, D. C. Connexin and pannexin mediated cell-cell communication. Neuron Glia Biol. 3, 199–208 (2007).
Article PubMed PubMed Central Google Scholar
Alhouayek, M., Sorti, R., Gilthorpe, J. D. & Fowler, C. J. Role of pannexin-1 in the cellular uptake, release and hydrolysis of anandamide by T84 colon cancer cells. Sci. Rep. 9, 7622 (2019).
Article PubMed PubMed Central Google Scholar
Chekeni, F. B. et al. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467, 863–867 (2010).
Article CAS PubMed PubMed Central Google Scholar
Moorer, M. C. et al. Defective signaling, osteoblastogenesis and bone remodeling in a mouse model of connexin 43 C-terminal truncation. J. Cell Sci. 130, 531–540 (2017).
CAS PubMed PubMed Central Google Scholar
Narahari, A. K. et al. ATP and large signaling metabolites flux through caspase-activated Pannexin 1 channels. Elife 10, e64787 (2021).
Article CAS PubMed PubMed Central Google Scholar
Pacheco-Costa, R. et al. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain. Bone 81, 632–643 (2015).
Article CAS PubMed PubMed Central Google Scholar
Dubyak, G. R. Both sides now: multiple interactions of ATP with pannexin-1 hemichannels. Focus on “A permeant regulating its permeation pore: inhibition of pannexin 1 channels by ATP”. Am. J. Physiol. Cell Physiol. 296, C235–C241 (2009).
Article CAS PubMed PubMed Central Google Scholar
Panchin, Y. V. Evolution of gap junction proteins–the pannexin alternative. J. Exp. Biol. 208, 1415–1419 (2005).
Article CAS PubMed Google Scholar
Panchin, Y. et al. A ubiquitous family of putative gap junction molecules. Curr. Biol. 10, R473–R474 (2000).
Article CAS PubMed Google Scholar
Donahue, H. J., Qu, R. W. & Genetos, D. C. Joint diseases: from connexins to gap junctions. Nat. Rev. Rheumatol. 14, 42–51 (2017).
Bond, S. R. et al. Pannexin 3 is a novel target for Runx2, expressed by osteoblasts and mature growth plate chondrocytes. J. Bone Min. Res. 26, 2911–2922 (2011).
Penuela, S. et al. Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J. Cell Sci. 120, 3772–3783 (2007).
Article CAS PubMed Google Scholar
Xiao, Z. et al. Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts. J. Cell Physiol. 210, 325–335 (2007).
Article CAS PubMed Google Scholar
Baranova, A. et al. The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 83, 706–716 (2004).
Article CAS PubMed Google Scholar
Harber, P. & McCoy, J. M. Predicate calculus, artificial intelligence, and workers’ compensation. J. Occup. Med. 31, 484–489 (1989).
Riquelme, M. A. et al. The ATP required for potentiation of skeletal muscle contraction is released via pannexin hemichannels. Neuropharmacology 75, 594–603 (2013).
Article CAS PubMed Google Scholar
Langlois, S. et al. Pannexin 1 and pannexin 3 channels regulate skeletal muscle myoblast proliferation and differentiation. J. Biol. Chem. 289, 30717–30731 (2014).
Article CAS PubMed PubMed Central Google Scholar
Buvinic, S. et al. ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle. J. Biol. Chem. 284, 34490–34505 (2009).
Article CAS PubMed PubMed Central Google Scholar
Cea, L. A. et al. De novo expression of connexin hemichannels in denervated fast skeletal muscles leads to atrophy. Proc. Natl. Acad. Sci. USA 110, 16229–16234 (2013).
Article CAS PubMed PubMed Central Google Scholar
Kanjanamekanant, K., Luckprom, P. & Pavasant, P. P2X7 receptor-Pannexin1 interaction mediates stress-induced interleukin-1 beta expression in human periodontal ligament cells. J. Periodontal. Res. 49, 595–602 (2014).
Article CAS PubMed Google Scholar
Vogt, A., Hormuzdi, S. G. & Monyer, H. Pannexin1 and Pannexin2 expression in the developing and mature rat brain. Brain Res. Mol. Brain Res. 141, 113–120 (2005).
Article CAS PubMed Google Scholar
Ishikawa, M. et al. Pannexin 3 functions as an ER Ca2+ channel, hemichannel, and gap junction to promote osteoblast differentiation. J. Cell Biol. 193, 1257–1274 (2011).
Article CAS PubMed PubMed Central Google Scholar
Iwamoto, T. et al. Pannexin 3 regulates proliferation and differentiation of odontoblasts via its hemichannel activities. PLoS One 12, e0177557 (2017).
Article PubMed PubMed Central Google Scholar
Le Vasseur, M., Lelowski, J., Bechberger, J. F., Sin, W. C. & Naus, C. C. Pannexin 2 protein expression is not restricted to the CNS. Front. Cell Neurosci. 8, 392 (2014).
Article PubMed PubMed Central Google Scholar
Pillon, N. J. et al. Nucleotides released from palmitate-challenged muscle cells through pannexin-3 attract monocytes. Diabetes 63, 3815–3826 (2014).
Article CAS PubMed Google Scholar
Deng, Z. et al. Cryo-EM structures of the ATP release channel pannexin 1. Nat. Struct. Mol. Biol. 27, 373–381 (2020).
Article CAS PubMed Google Scholar
Jin, Q. et al. Cryo-EM structures of human pannexin 1 channel. Cell Res. 30, 449–451 (2020).
Article CAS PubMed PubMed Central Google Scholar
Michalski, K. et al. The Cryo-EM structure of pannexin 1 reveals unique motifs for ion selection and inhibition. Elife 9, e54670 (2020).
Article CAS PubMed PubMed Central Google Scholar
Mou, L. et al. Structural basis for gating mechanism of Pannexin 1 channel. Cell Res. 30, 452–454 (2020).
Article PubMed PubMed Central Google Scholar
Qu, R. et al. Cryo-EM structure of human heptameric Pannexin 1 channel. Cell Res. 30, 446–448 (2020).
Article PubMed PubMed Central Google Scholar
Ruan, Z., Orozco, I. J., Du, J. & Lu, W. Structures of human pannexin 1 reveal ion pathways and mechanism of gating. Nature 584, 646–651 (2020).
留言 (0)