Bone marrow mesenchymal stem cell-derived exosomes shuttle microRNAs to endometrial stromal fibroblasts that promote tissue proliferation /regeneration/ and inhibit differentiation

Rando TA. Stem cells, ageing and the quest for immortality. Nature. 2006;441(7097):1080–6.

Article  CAS  PubMed  Google Scholar 

Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.

Article  CAS  PubMed  Google Scholar 

Blais M, et al. Concise review: tissue-engineered skin and nerve regeneration in burn treatment. Stem Cells Transl Med. 2013;2(7):545–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui CY, Ferrucci L, Gorospe M. Macrophage involvement in Aging-Associated skeletal muscle regeneration. Cells, 2023. 12(9).

Lindsey ML, Becirovic-Agic M. Skin wound healing as a mirror to cardiac wound healing. Exp Physiol; 2023.

Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

Article  CAS  PubMed  Google Scholar 

Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med. 2010;5(1):121–43.

Article  PubMed  Google Scholar 

Jiang Y, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–9.

Article  CAS  PubMed  Google Scholar 

Kou M, et al. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool? Cell Death Dis. 2022;13(7):580.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asgarpour K, et al. Exosomal microRNAs derived from mesenchymal stem cells: cell-to-cell messages. Cell Commun Signal. 2020;18(1):149.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Théry C et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol, 2006. Chapter 3: p. Unit 3.22.

De Toro J, et al. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol. 2015;6:203.

PubMed  PubMed Central  Google Scholar 

Valadi H, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

Article  CAS  PubMed  Google Scholar 

Bang C, Thum T. Exosomes: new players in cell-cell communication. Int J Biochem Cell Biol. 2012;44(11):2060–4.

Article  CAS  PubMed  Google Scholar 

Jeppesen DK, et al. Reassessment of Exosome Composition. Cell. 2019;177(2):428–e44518.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Riazifar M, et al. Stem cell Extracellular vesicles: extended messages of regeneration. Annu Rev Pharmacol Toxicol. 2017;57:125–54.

Article  CAS  PubMed  Google Scholar 

Tkach M, Théry C. Communication by Extracellular vesicles: where we are and where we need to go. Cell. 2016;164(6):1226–32.

Article  CAS  PubMed  Google Scholar 

Huang X, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics. 2013;14:319.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taylor HS. ENdometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292(1):81–5.

Article  CAS  PubMed  Google Scholar 

Mints M, et al. Endometrial endothelial cells are derived from donor stem cells in a bone marrow transplant recipient. Hum Reprod. 2008;23(1):139–43.

Article  CAS  PubMed  Google Scholar 

Ikoma T, et al. Bone marrow-derived cells from male donors can compose endometrial glands in female transplant recipients. Am J Obstet Gynecol. 2009;201(6):e6081–8.

Article  Google Scholar 

Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev. 2014;35(6):851–905.

Article  CAS  PubMed  Google Scholar 

Tal R, et al. Bone marrow-derived progenitor cells contribute to remodeling of the postpartum uterus. Stem Cells. 2021;39(11):1489–505.

Article  CAS  PubMed  Google Scholar 

Ulrich D, et al. Mesenchymal stem/stromal cells in post-menopausal endometrium. Hum Reprod. 2014;29(9):1895–905.

Article  CAS  PubMed  Google Scholar 

Paulson RJ, et al. Pregnancy in the sixth decade of life: obstetric outcomes in women of advanced reproductive age. JAMA. 2002;288(18):2320–3.

Article  PubMed  Google Scholar 

Bulletti C, et al. Early human pregnancy in vitro utilizing an artificially perfused uterus. Fertil Steril. 1988;49(6):991–6.

Article  CAS  PubMed  Google Scholar 

Tal R, et al. Adult bone marrow progenitors become decidual cells and contribute to embryo implantation and pregnancy. PLoS Biol. 2019;17(9):e3000421.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tal R, et al. Bone-marrow-derived endothelial progenitor cells contribute to vasculogenesis of pregnant mouse uterus†. Biol Reprod. 2019;100(5):1228–37.

Article  PubMed  PubMed Central  Google Scholar 

Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976;4(5):267–74.

CAS  PubMed  Google Scholar 

Raff M. Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol. 2003;19:1–22.

Article  CAS  PubMed  Google Scholar 

Jopling C, Boue S, Izpisua Belmonte JC. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol. 2011;12(2):79–89.

Article  CAS  PubMed  Google Scholar 

Xie J, et al. Roles of MicroRNA-21 in skin Wound Healing: a Comprehensive Review. Front Pharmacol. 2022;13:828627.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lyu L, et al. Exosomes derived from M2 macrophages induce angiogenesis to promote wound healing. Front Mol Biosci. 2022;9:1008802.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang T, et al. The protective effect of microRNA-21 in neurons after spinal cord injury. Spinal Cord. 2019;57(2):141–9.

Article  PubMed  Google Scholar 

Ma Y, et al. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles promote the proliferation of Schwann Cells by regulating the PI3K/AKT signaling pathway via transferring miR-21. Stem Cells Int. 2021;2021:p1496101.

Article  Google Scholar 

Kurita T, Li X, Bhawal UK. Crosstalk between microRNA-21-5p and the transcription factor Dec1 maintains osteoblast function. Biochem Biophys Res Commun. 2022;632:32–9.

Article  CAS  PubMed  Google Scholar 

Yan-nan B, et al. MicroRNA-21 accelerates hepatocyte proliferation in vitro via PI3K/Akt signaling by targeting PTEN. Biochem Biophys Res Commun. 2014;443(3):802–7.

Article  PubMed  Google Scholar 

Tanwar V, et al. Gremlin 2 promotes differentiation of embryonic stem cells to atrial fate by activation of the JNK signaling pathway. Stem Cells. 2014;32(7):1774–88.

Article  CAS  PubMed  Google Scholar 

Sarkar S, Dey BK, Dutta A. MiR-322/424 and– 503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A. Mol Biol Cell. 2010;21(13):2138–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li W, et al. Gremlin2 regulates the differentiation and function of Cardiac Progenitor cells via the Notch Signaling Pathway. Cell Physiol Biochem. 2018;47(2):579–89.

Article  CAS  PubMed  Google Scholar 

Li L, et al. Knockdown of nucleosome assembly protein 1-like 1 promotes dimethyl sulfoxide-induced differentiation of P19CL6 cells into cardiomyocytes. J Cell Biochem. 2012;113(12):3788–96.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif