Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance

O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations. AMR Review https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (2016).

Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

Article  CAS  Google Scholar 

Choudhury, R., Panda, S. & Singh, D. Emergence and dissemination of antibiotic resistance: a global problem. Indian J. Med. Microbiol. 30, 384–390 (2012).

Article  CAS  PubMed  Google Scholar 

Bougnom, B. P. & Piddock, L. J. V. Wastewater for urban agriculture: a significant factor in dissemination of antibiotic resistance. Environ. Sci. Technol. 51, 5863–5864 (2017).

Article  CAS  PubMed  Google Scholar 

Goulas, A. et al. How effective are strategies to control the dissemination of antibiotic resistance in the environment? A systematic review. Environ. Evid. 9, 4 (2020).

Article  Google Scholar 

Zhu, G. et al. Air pollution could drive global dissemination of antibiotic resistance genes. ISME J. 15, 270–281 (2021).

Article  CAS  PubMed  Google Scholar 

Ellabaan, M. M. H., Munck, C., Porse, A., Imamovic, L. & Sommer, M. O. A. Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Nat. Commun. 12, 2435 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grote, A. & Earl, A. M. Within-host evolution of bacterial pathogens during persistent infection of humans. Curr. Opin. Microbiol. 70, 102197 (2022).

Article  CAS  PubMed  Google Scholar 

Didelot, X., Walker, A. S., Peto, T. E., Crook, D. W. & Wilson, D. J. Within-host evolution of bacterial pathogens. Nat. Rev. Microbiol. 14, 150–162 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castro, R. A. D., Borrell, S. & Gagneux, S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiol. Rev. 45, fuaa071 (2021).

Article  CAS  PubMed  Google Scholar 

Winstanley, C., O’Brien, S. & Brockhurst, M. A. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol. 24, 327–337 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marvig, R. L., Sommer, L. M., Molin, S. & Johansen, H. K. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat. Genet. 47, 57–64 (2015).

Article  CAS  PubMed  Google Scholar 

Giulieri, S. G. et al. Niche-specific genome degradation and convergent evolution shaping Staphylococcus aureus adaptation during severe infections. eLife 11, e77195 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azarian, T., Ridgway, J. P., Yin, Z. & David, M. Z. Long-term intrahost evolution of methicillin resistant Staphylococcus aureus among cystic fibrosis patients with respiratory carriage. Front. Genet. 10, 546 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, S., Feng, X., Li, M. & Shen, Z. In vivo adaptive antimicrobial resistance in Klebsiella pneumoniae during antibiotic therapy. Front. Microbiol. 14, 1159912 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Friedman, N. D., Temkin, E. & Carmeli, Y. The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 22, 416–422 (2016).

Article  CAS  PubMed  Google Scholar 

Goossens, H., Ferech, M., Stichele, R. V. & Elseviers, M. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 365, 579–587 (2005).

Article  PubMed  Google Scholar 

Gustafsson, I. Bacteria with increased mutation frequency and antibiotic resistance are enriched in the commensal flora of patients with high antibiotic usage. J. Antimicrob. Chemother. 52, 645–650 (2003).

Article  CAS  PubMed  Google Scholar 

Baquero, F. et al. Evolutionary pathways and trajectories in antibiotic resistance. Clin. Microbiol. Rev. 34, e00050-19 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vanacker, M., Lenuzza, N. & Rasigade, J.-P. The fitness cost of horizontally transferred and mutational antimicrobial resistance in Escherichia coli. Front. Microbiol. 14, 1186920 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Melnyk, A. H., Wong, A. & Kassen, R. The fitness costs of antibiotic resistance mutations. Evol. Appl. 8, 273–283 (2015).

Article  PubMed  Google Scholar 

Hendriksen, R. S. et al. Using genomics to track global antimicrobial resistance. Front. Public. Health 7, 242 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Darby, E. M. et al. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21, 280–295 (2023).

Article  CAS  PubMed  Google Scholar 

McEwen, S. A. & Collignon, P. J. Antimicrobial resistance: a one health perspective. Microbiol. Spectr. 6, 6.2.10 (2018).

Article  Google Scholar 

Hiltunen, T., Virta, M. & Laine, A.-L. Antibiotic resistance in the wild: an eco-evolutionary perspective. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160039 (2017).

Article  Google Scholar 

Larsson, D. G. J. & Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 20, 257–269 (2022).

Article  CAS  PubMed  Google Scholar 

Chung, H. et al. Rapid expansion and extinction of antibiotic resistance mutations during treatment of acute bacterial respiratory infections. Nat. Commun. 13, 1231 (2022). Captures dynamic fluctuations in resistance mutations across 420 P. aeruginosa isolates during acute infection, capturing both spontaneous mutation and dynamic selection of pre-existing resistance at the start of antibiotic selection.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eklöf, J. et al. Persistence and genetic adaptation of Pseudomonas aeruginosa in patients with chronic obstructive pulmonary disease. Clin. Microbiol. Infect. 28, 990–995 (2022). Study of P. aeruginosa adaptation in patients with chronic obstructive pulmonary disease, covering 153 isolates from 23 patients across 1 year of infection and identifying multiple spontaneous mutations that conferred resistance to anti-pseudomonal drugs.

Article  PubMed  Google Scholar 

Hjort, K. et al. Dynamics of extensive drug resistance evolution of Mycobacterium tuberculosis in a single patient during 9 years of disease and treatment. J. Infect. Dis. 225, 1011–1020 (2022).

Article  CAS  PubMed  Google Scholar 

Khademi, S. M. H., Sazinas, P. & Jelsbak, L. Within-host adaptation mediated by intergenic evolution in Pseudomonas aeruginosa. Genome Biol. Evol. 11, 1385–1397 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liao, W. et al. Evolution of tet(A) variant mediating tigecycline resistance in KPC-2-producing Klebsiella pneumoniae during tigecycline treatment. J. Glob. Antimicrob. Resist. 28, 168–173 (2022).

Article  CAS  PubMed  Google Scholar 

Lindemann, P. C. et al. Case report: whole-genome sequencing of serially collected Haemophilus influenzae from a patient with common variable immunodeficiency reveals within-host evolution of resistance to trimethoprim–sulfamethoxazole and azithromycin after prolonged treatment with these antibiotics. Front. Cell. Infect. Microbiol. 12, 896823 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Long, D. R. et al. Polyclonality, shared strains, and convergent evolution in chronic cystic fibrosis Staphylococcus aureus airway infection. Am. J. Respir. Crit. Care Med. 203, 1127–1137 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sommer, L. M. et al. Bacterial evolution in PCD and CF patients follows the same mutational steps. Sci. Rep. 6, 28732 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aihara, M. et al. Within-host evolution of a Klebsiella pneumoniae clone: selected mutations associated with the alteration of outer membrane protein expression conferred multidrug resistance. J. Antimicrob. Chemother. 76, 362–369 (2021).

Article  CAS  PubMed  Google Scholar 

Boulant, T. et al. A 2.5-year within-patient evolution of Pseudomonas aeruginosa isolates with in vivo acquisition of ceftolozane–tazobactam and ceftazidime–avibactam resistance upon treatment. Antimicrob. Agents Chemother. 63, e01637-19 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Chen, C.-J., Huang, Y.-C. & Shie, S.-S. Evolution of multi-resistance to vancomycin, daptomycin, and linezolid in methicillin-resistant Staphylococcus aureus causing persistent bacteremia. Front. Microbiol. 11, 1414 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif