Plantlet regeneration via somatic embryogenesis and changes in endogenous hormone content of Rosa ‘John F. Kennedy’

Azadi P, Kermani MJ, Samiei L (2018) Somatic embryogenesis in Rosa hybrida. In: Jain, S., Gupta, P. (eds) Step wise protocols for somatic embryogenesis of important woody plants. Forestry Sciences 85: 161–170.Springer, Cham. https://doi.org/10.1007/978-3-319-79087-9_13

Bao Y, Liu GF, Shi XP, Ning GG, Liu J, Bao MZ (2012) Primary and repetitive secondary somatic embryogenesis in Rosa hybrida ‘Samantha.’ Plant Cell Tiss Org Cult 109:411–418. https://doi.org/10.1007/s11240-011-0105-6

Article  CAS  Google Scholar 

Bustam S, Sinniah UR, Kadir MA, Zaman QZ, Subrananiam S (2013) Selection of optimal stage for protocorm-like bodies and production of artificial seeds for direct regeneration on different media and short term storage of Dendrobium Shavin White. Plant Growth Regul 69:215–224. https://doi.org/10.1007/s10725-012-9763-6

Article  CAS  Google Scholar 

Chen JR, Wu L, Hu BW, Yi X, Liu R, Deng ZN, Xiong XM (2014) The influence of plant growth regulators and light quality on somatic embryogenesis in China Rose (Rosa chinensis Jacq.). J Plant Growth Regul 33:295–304. https://doi.org/10.1007/s00344-013-9371-3

Article  CAS  Google Scholar 

Du L (2005) Preliminary studies on plant regeneration via somatic embryogenesis and Agrobacterium-mediated transformation of Camphor Tree (Cinnamomum camphora L.). PhD Dissertation. Huazhong Agricultural University, Wuhan, Hubei, China. (in Chinese)

Du L, Zhou S, Bao MZ (2007) Effect of plant growth regulators on direct somatic embryogenesis in camphor tree (Cinnamomumcamphora L.) from immature zygotic embryos and embryogenic calli induction. For Stud China 9:267–271 (in Chinese)

Article  CAS  Google Scholar 

Ebrahimi M, Mokhtari A, Amirian R (2018) A highly efficient method for somatic embryogenesis of Kelussiaodorotissima Mozaff., an endangered medicinal plant. Plant Cell Tiss Org Cult 132:99–110. https://doi.org/10.1007/s11240-017-1314-4

Article  CAS  Google Scholar 

Farias-Soares FL, Steiner N, Schmidt EC, Pereira MLT, Rogge-Renner GD, Bouzon ZL, Floh ESI, Guerra MP (2014) The transition of proembryogenic masses to somatic embryos in Araucaria angustifolia (Bertol.) Kuntze is related to the endogenous contents of IAA, ABA and polyamines. Acta Physiol Plant 36:1853–1865

Article  CAS  Google Scholar 

Forcat S, Bennett MH, Mansfield JW, Grant MR (2008) A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress. Plant Methods 4:1–8. https://doi.org/10.1186/1746-4811-4-16

Article  CAS  Google Scholar 

Gao LP (2004) Establishment of plant regeneration system and studies on Agrobacterium-mediated transformation of Rosa hybrida cv. Samantha. PhD Dissertation. Huazhong Agricultural University, Wuhan, Hubei, China. (in Chinese)

Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, YOnekura-Sakakibara K, Togami J, Pigeaire A, Tao GQ, Nehra NS, Lu CY, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–600. https://doi.org/10.1093/PCP/PCM131

Article  CAS  PubMed  Google Scholar 

Kępczyńska E, Orłowska A (2021) Profiles of endogenous ABA, bioactive GAs, IAA and their metabolites in Medicago truncatula Gaertn. non-embryogenic and embryogenic tissues during induction phase in relation to somatic embryo formation. Planta 253:67. https://doi.org/10.1007/s00425-021-03582-8

Khatami F, Najafi F, Yari F, Khavari-Nejad RA (2020) Expression of etr1–1 gene in transgenic Rosa hybrida L. increased postharvest longevity through reduced ethylene biosynthesis and perception. SciHort 263:109103. https://doi.org/10.1016/j.scienta.2019.109103

Article  CAS  Google Scholar 

Kim SW, Oh SC, Liu JR (2003) Control of direct and indirect somatic embryogenesis by exogenous growth regulators in immature zygotic embryo cultures of rose. Plant Cell Tiss Org Cult 74:61–66. https://doi.org/10.1023/A:1023355729046

Article  CAS  Google Scholar 

Lee SY, Lee JL, Kim JH, Ko JY, Kim ST, Lee EK, Kim WH, Kwon Hyeno O (2013) Production of somatic embryo and transgenic plants derived from breeding lines of Rosa hybrida L. Hort Environ Biotechnol 54:172–176. https://doi.org/10.1007/s13580-013-0085-z

Article  Google Scholar 

Liang Y, Xu X, Shen HL, Gao ML, Zhao Y, Bai X (2022) Morphological and endogenous phytohormone changes during long-term embryogenic cultures in Korean pine. Plant Cell Tiss Org Cult 151:253–264. https://doi.org/10.1007/s11240-022-02348-8

Article  CAS  Google Scholar 

Lin Y, Li J, Li B, He T, Chun Z (2011) Effects of light quality on growth and development of protocorm-like bodies of Dendrobium officinale in vitro. Plant Cell Tiss Org Cult 105:329–335. https://doi.org/10.1007/s11240-010-9871-9

Article  Google Scholar 

Liu GQ, Yuan Y, Jiang H, Bao Y, Ning GG, Zhao LJ, Zhou XF, Zhou HG, Gao JP, Ma N (2021) Agrobacterium tumefaciens-mediated transformation of modern rose (Rosa hybrida) using leaf-derived embryogenic callus. Hort Plant J 7:359–366. https://doi.org/10.1016/j.hpj.2021.02.001

Article  CAS  Google Scholar 

Mikuła A, Tomaszewicz W, Dziurka M, Kazmierczak A, Grzyb M, Sobczak M, Zdankowski P, Rybczynski J (2021) The origin of the Cyathea delgadii Sternb. somatic embryos is determined by the developmental state of donor issue and mutual balance of selected metabolites. Cells 10:1388. https://doi.org/10.3390/cells10061388 

Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Article  CAS  Google Scholar 

Nakamura N, Katsumoto Y, Brugliera F, Demelis L, Nakajima D, Suzuki H, Tanaka Y (2015) Flower color modification in Rosa hybrida by expressing the S-adenosylmethionine: anthocyanin 3′,5′-O-methyltransferase gene from Toreniahybrida. Plant Biotechnol 32:109–117. https://doi.org/10.5511/plantbiotechnology.15.0205a

Article  CAS  Google Scholar 

Nic-Can GI, Loyola-Vargas VM (2016) The role of the auxins during somatic embryogenesis. In: Loyola-Vargas V, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. 171–182. Springer, Cham. https://doi.org/10.1007/978-3-319-33705-0_10

Nguyen NH, Van LB (2020) A simple, economical, and high efficient protocol to produce in vitro miniature rose. In Vitro Cell Dev Biol - Plant 56:362–365. https://doi.org/10.1007/s11627-019-10043-1

Pati PK, Sharma M, Sood A, Ahuja PS (2004) Direct shoot regeneration from leaf explants of Rosa damascena Mill. In Vitro Cell Dev Biol - Plant 40:192–195. https://doi.org/10.1079/IVP2003503

Pourhosseini L, Kermani MJ, Habashi AA, Khalighi A (2013) Efficiency of direct and indirect shoot organogenesis in different genotypes of Rosa hybrida. Plant Cell Tiss Org Cult 112:101–108. https://doi.org/10.1007/s11240-012-0210-1

Article  CAS  Google Scholar 

Qi WC, Chen X, Fang PH, Shi SC, Li JJ, Liu XT, Cao XQ, Zhao N, Hao HY, Li YJ, Han YJ, Zhang Z (2018) Genomic and transcriptomic sequencing of Rosa hybrida provides microsatellite markers for breeding, flower trait improvement and taxonomy studies. BMC Plant Biol 18:119. https://doi.org/10.1186/s12870-018-1322-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rout GR, Debata BK, Das P (1991) Somatic embryogenesis in callus cultures of Rosa hybrida L. cv. Landora Plant Cell Tiss Org Cult 27:65–69. https://doi.org/10.1007/BF00048208

Article  CAS  Google Scholar 

Samiei L, Pahnehkolayi MD, Tehranifar A, Karimian Z (2021) Organic and inorganic elicitors enhance in vitro regeneration of Rosa canina. J Genet Eng Biotechnol 19:60. https://doi.org/10.1186/s43141-021-00166-7

Article  PubMed  PubMed Central  Google Scholar 

Sasakin K, Shimomura K, Kamada H, Harada H (1994) IAA metabolism in embryogenic and non-embryogenic carrot cells. Plant Cell Physiol 35:1159–1164. https://doi.org/10.1093/oxfordjournals.pcp.a078709

Srinivasan P, Raja HD, Tamilvanan R (2021) Efficient in vitro plant regeneration from leaf-derived callus and genetic fidelity assessment of an endemic medicinal plant Ranunculus wallichianus Wight & Arnn by using RAPD and ISSR markers. Plant Cell Tiss Org Cult 147:413–420. https://doi.org/10.1007/s11240-021-02134-y

Article  CAS  Google Scholar 

Su YH, Su YX, Liu YG, Zhang XS (2013) Abscisic acid is required for somatic embryo initiation through mediating spatial auxin response in Arabidopsis. Plant Growth Regul 69:167–176. https://doi.org/10.1007/s10725-012-9759-2

Article  CAS  Google Scholar 

Tanaka Y, Aida R (2010) Genetic engineering in floriculture. In: Jain S, Brar D (eds) Molecular techniques in crop improvement. 695–717. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2967-6_30

Tian CW, Chen Y, Zhao XL, Zhao LJ (2008) Plant regeneration through protocorm-like bodies induced from rhizoids using leaf explants of Rosa spp. Plant Cell Rep 27:823–831. https://doi.org/10.1007/s00299-007-0504-7

Article  CAS  PubMed  Google Scholar 

Vergne P, Maene M, Gabant G, Chauvet A, Debener T, Bendahmane M (2010) Somatic embryogenesis and transformation of the diploid Rosa chinensis cv Old Blush. Plant Cell Tiss Org Cult 100:73. https://doi.org/10.1007/s11240-009-9621-z

Article  Google Scholar 

Wu GY, Wei XL, Wang X, Wei Y (2021) Changes in biochemistry and histochemical characteristics during somatic embryogenesis in Ormosiahenryi Prain. Plant Cell Tiss Org Cult 144:505–517. https://doi.org/10.1007/s11240-020-01973-5

Article  CAS  Google Scholar 

Zhou S, Du L, Chu XY, Bao MZ (2010) Establishment of plantlet regeneration system from leaves explants for callistephus chinensis ‘bouquet scarlet’. Acta Horticulturae Sinica 37(10):1667–1672. (in Chinese)

Zhu ZF (2022) Studies on plant regeneration via somatic embryogenesis and its characters in physiology and biochemistry of Rosa hybrida L.M. D. Dissertation. Nanyang Normal University, Nanyang, Henan, China. (in Chinese)

Zhu ZF, Zheng MY, Ma Y, Li JM, K XL, Du L (2022) Somatic embryo induction and plantlet regeneration of Rosa hybrida ‘Tineke’, Mol Plant Breed 1–9. (in Chinese)

留言 (0)

沒有登入
gif