Alternative system for micropropagation of Prunus campanulata (Maxim.)

Arencibia AD, Gómez A, Poblete MA, Orellana F, Alarcón JE, Cortez N, Valenzuela MA (2018) Establishment of photomixotrophic cultures for high-scale micropropagation by temporary immersion bioreactors (TIBs) in plant commercial species. Acta Hortic 1224:203–208

Article  Google Scholar 

Barbosa GG, Targa VMI, Otoni WC, Rondon JN, Costa FA (2021) Cultivo in vitro de embrião zigótico de baru influenciado por tipos de vedações e concentrações de sacarose. Braz J Dev 7:42390–42408

Article  Google Scholar 

Carrari-Santos R, Vettorazzi RG, Pinto VB, Sena EOA, de Oliveira JG, Campostrini E, Silveira V, Santa-Catarina C (2023) Microporous membrane and culture medium affect in vitro seedling development of Dalbergia nigra (Vell.) Ex Benth. (Fabaceae) by modulation of the protein profile and accumulation of ethylene and CO2. Plant Cell Tissue Organ Cult 153:559–576. https://doi.org/10.1007/s11240-023-02492-9

Article  CAS  Google Scholar 

Chen B, Li J, Zhang J, Wu Z, Fan H, Li Q (2016) Optimizing the rapid technique for propagation of Cerasus campanulata by tissue culture. Pak J Bot 48:305–309

CAS  Google Scholar 

Chen SY, Chien CT, Chung JD, Yang YS, Kuo SR (2007) Dormancy-break and germination in seeds of Prunus campanulata (Rosaceae): role of covering layers and changes in concentration of abscisic acid and gibberellins. Seed Sci Res 17:21–32. https://doi.org/10.1017/S0960258507383190

Article  CAS  Google Scholar 

De-Souza LM, Barbosa MR, De Souza RA, Bussmeyer EC, Houllou LM (2020) Influência da sacarose no crescimento e no perfil de pigmentos fotossintéticos em duas espécies arbóreas cultivadas in vitro. Braz J Dev 6:1916–1626

Article  Google Scholar 

Dutra LF, Wendling I, Brondani GE (2009) A Micropropagação de eucalipto. Pesqui. Florest. Bras, Colombo

Google Scholar 

Estouka IY, Alhagdow MM, Bughrara SS (2022) Effect of sucrose concentration on micropropagation of ginger (Zingiber officinale Rosc.). J. Genet. Genom Plant Breed 6:34–40

CAS  Google Scholar 

Ferreira EB, Cavalcanti PP, Nogueira DA (2018) ExpDes.pt: Pacote Experimental Designs (Portuguese). R package version 1.2.0. https://CRAN.Rproject.org/package=ExpDes.pt. Accessed 20 Feb 2023

Flores R, Uliana SC, Pimentel N, Garlet TMB (2013) Sacarose e sorbitol na conservação in vitro de Pfaffia tuberosa (Amaranthaceae). J Biotechnol Biodivers 4:192–199

Article  CAS  Google Scholar 

Fortini EA, Batista DS, Mamedes-Rodrigues TC, Felipe SHS, Correia LNF, Chagas C, Silva PO, Rocha DI, Otoni WC (2021) Gas exchange rates and sucrose concentrations affect plant growth and production of flavonoids in Vernonia condensata grown in vitro. Plant Cell Tiss Org Cult 144:593–605. https://doi.org/10.1007/s11240-020-01981-5

Article  CAS  Google Scholar 

Fox J, Weisberg S (2011) An companion to applied regression, 2nd edn. Sage, Thousand Oaks

Google Scholar 

Gago D, Vilavert S, Bernal MÁ, Sánchez C, Aldrey A, Vidal N (2021) The effect of sucrose supplementation on the micropropagation of Salix viminalis L. shoots in semisolid medium and temporary immersion bioreactors. Forests 12:1408. https://doi.org/10.3390/f12101408

Article  Google Scholar 

Guanais DD, Moraes F, Junior PCF (2022) Cultivo in vitro de Acca sellowiana (O. Berg.) burret. em sistema de ventilação natural com tampas comerciais. Encicl Biosf 19:190

Article  Google Scholar 

INMET Instituto Nacional De Meteorologia (2023) Dados Históricos. https://tempo.inmet.gov.br/. Accessed 20 Jan 2023

Jan T, Gul S, Khan A, Pervez S, Noor A, Amin H, Bibi S, Nawaz MA, Rahim A, Ahmad MS, Azam R, Ullah H (2023) Range of factors in the reduction of hyperhydricity associated with in vitro shoots of Salvia santolinifolia Bioss. Braz J Biol 83. https://doi.org/10.1590/1519-6984.246904

Jesus AMS, Villa F, Lara ACC, Pasqual M (2011) Avaliação do efeito das concentrações de sacarose e dos estádios de desenvolvimento do fruto no cultivo in vitro de embriões de frutos de cafeeiro. Rev Ceres 58:679–684. https://doi.org/10.1590/S0034-737X2011000600001

Article  CAS  Google Scholar 

Lembrechts R, Ceustersb N, Profta MP, Ceustersb J (2017) Sugar and starch dynamics in the medium-root-leaf system indicate possibilities to optimize plant tissue culture. Sci Hortic 224:226–231

Article  CAS  Google Scholar 

Liu L, Chen X, Xle J, Chen G, Zhang F, Huang J, Fan J, Luo W (2020) Study on seed germination of Cerasus campanulata. Forest Environ Sci 36:105–108

Google Scholar 

Lloyd G, McCown BH (1980) Commercially-feasible micropropagation of Mountain Laurel, Kalmia latifolia, by use of shoot-tip culture. Combined Proceedings-International Plant Propagator’s Society 30:421–427

Google Scholar 

Lobo AKM, Martins MO, Lima-Neto MC, Machado EC, Ribeiro FV, Silveira JAG (2015) Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity. J Plant Physiol 179:113–121

Article  CAS  PubMed  Google Scholar 

Lorenzi H, Bacher L, Lacerda M, Sartori S (2006) Frutas brasileiras e exóticas cultivadas: (de consumo in natura). Instituto Plantarum de Estudos da Flora, São Paulo

Google Scholar 

Lowe KC, Anthony P, Power JB, Davey MR (2003) Novel approaches for regulating gas supply to plant systems in vitro: application and benefits of artificial gas carriers. In Vitro Cell Dev Biol - Plant 39:557–566

Article  CAS  Google Scholar 

Miranda NA, Titon M, Pereira IM, Fernandes JSC, Gonçalves JF, Rocha FM (2016) Meio de cultura, reguladores de crescimento e formas de vedação de tubos de ensaio na multiplicação in vitro de candeia (Eremanthus incanus (Less.) Less). Sci For 44:112. https://doi.org/10.18671/scifor.v44n112.22

Article  Google Scholar 

Murashige T, Skoog FA (1962) Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

Article  CAS  Google Scholar 

Nunez-Ramos JE, Quiala E, Posada L, Mestanza S, Sarmiento L, Daniels D, Arroyo CR, Naranjo B, Vizuete K, Noceda C, Kosky RG (2021) Morphological and physiological responses of tara (Caesalpinia spinosa (Mol.) O. Kuntz) microshoots to ventilation and sucrose treatments. In Vitro Cell Dev Biol - Plant 57:1–14. https://doi.org/10.1007/s11627-020-10104-w

Article  CAS  Google Scholar 

Oliveira-Junior JB, Pessoa CMP, Scherwinski-Pereira JE, Lopes HS, Costa FHS (2022) A simple, alternative and efficient sealing system to improve natural ventilation in culture vessels and the morphophysiological and anatomical quality of Croton lechleri (Muell. Arg.) grown in vitro. Rev Biol 77:1–10. https://doi.org/10.1007/s11756-022-01140-5

Article  CAS  Google Scholar 

Phillips GC, Garda M (2019) Plant tissue culture media and practices: an overview. In Vitro Cell Dev Biol - Plant 55:242–257

Article  Google Scholar 

Polivanova OB, Bedarev VA (2022) Hyperhydricity in plant tissue culture. Plants 11:3313. https://doi.org/10.3390/plants11233313

Article  CAS  PubMed  PubMed Central  Google Scholar 

R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org. Accessed 20 Jun 2022

Saldanha CW, Otoni CG, De Azevedo JLF, Dias LLC, Do Rêgo MM, Otoni WC (2012) A low-cost alternative membrane system that promotes growth in nodal cultures of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tiss Org Cult 110:413–422. https://doi.org/10.1007/s11240-012-0162-5

Article  CAS  Google Scholar 

Zhang YH, Rong JD, Fu Y, Chen LG, Chen LY, Zheng YS (2015) Tissue culture and plant regeneration of Prunus campanulata Maxim. J Anim Plant Sci 25:146–151

CAS  Google Scholar 

留言 (0)

沒有登入
gif