Dietary Variation Effect on Life History Traits and Energy Storage in Neotropical Species of Drosophila (Diptera; Drosophilidae)

Andersen LH, Kristensen TN, Loeschcke V, Toft S, Mayntz D (2010) Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J Insect Physiol 56:336–340. https://doi.org/10.1016/j.jinsphys.2009.11.006

Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225. https://doi.org/10.1146/annurev-ento-112408-085356

Bächli G (2023) Taxodros, the database on taxonomy of Drosophilidae. http://www.taxodros.uzh.ch. Accessed 26 September 2023

Baker KD, Thummel CS (2007) Diabetic larvae and obese flies emerging studies of metabolism in Drosophila. Cell Metab 6:257–266. https://doi.org/10.1016/j.cmet.2007.09.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bakker K (1961) An analysis of factors which determine the success in competition for food among larvae of Drosophila melanogaster. Arch Neerl Zool 14:200–281. https://doi.org/10.1163/036551661X00061

Article  Google Scholar 

Begon M (1982) Yeasts and Drosophila. In: Ashburner M, Carson H, Thompson JN (eds) Genetics and biology of Drosophila. Academic Press, New York, pp 345–384

Google Scholar 

Bi J, Xiang Y, Chen H, Liu Z, Grönke S, Kühnlein RP, Huang X (2012) Opposite and redundant roles of the two Drosophila perilipins in lipid mobilization. J Cell Sci 125:3568–3577. https://doi.org/10.1242/jcs.101329

Article  CAS  PubMed  Google Scholar 

Brake I, Bächli G (2008) Drosophilidae (Diptera). Apollo Books, Stenstrup, World catalogue of insects

Book  Google Scholar 

Brito da Cunha A, El-Tabey Shehata AM, de Oliveira W (1957) A study of the diets and nutritional preferences of tropical species of Drosophila. Ecology 38:98–106. https://doi.org/10.2307/1932131

Article  Google Scholar 

Bruce KD, Hoxha S, Carvalho GB et al (2013) High carbohydrate–low protein consumption maximizes Drosophila lifespan. Exp Gerontol 48:1129–1135. https://doi.org/10.1016/j.exger.2013.02.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cavasini R, Buschini MLT, Machado LPB, Mateus RP (2014) Comparison of Drosophilidae (Diptera) assemblages from two highland Araucaria Forest fragments, with and without environmental conservation policies. Braz J Biol 74:761–768. https://doi.org/10.1590/1519-6984.00113

Article  CAS  PubMed  Google Scholar 

Chippindale A, Chu TJF, Rose MR (1996) Complex trade-offs and the evolution of starvation resistance in Drosophila melanogaster. Evolution 50:753–766. https://doi.org/10.1111/j.1558-5646.1996.tb03885.x

Article  PubMed  Google Scholar 

Chng WA, Hietakangas V, Lemaitre B (2017) Physiological adaptations to sugar intake: new paradigms from Drosophila melanogaster. Trends Endocrinol Metab 28:131–142. https://doi.org/10.1016/j.tem.2016.11.003

Article  CAS  PubMed  Google Scholar 

Church RB, Robertson FW (1966) A biochemical study of the growth of Drosophila melanogaster. J Exp Zool 162:337–351. https://doi.org/10.1002/jez.1401620309

Article  Google Scholar 

Conner JK, Hartl DL (2004) A primer of ecological genetics. Sunderland: Sinauer Associates, Sunderland

De Panis D, Dopazo H, Bongcam-Rudloff E, Conesa A, Hasson E (2022) Transcriptional responses are oriented towards different components of the rearing environment in two Drosophila sibling species. BMC Genom 23:1–15. https://doi.org/10.1186/s12864-022-08745-9

Article  CAS  Google Scholar 

Dennis RL, Dapporto L, Fattorini S, Cook LM (2011) The generalism–specialism debate: the role of generalists in the life and death of species. Biol J Linn Soc Lond 104:725–737. https://doi.org/10.1111/j.1095-8312.2011.01789.x

Article  Google Scholar 

Djawdan M, Chippindale AK, Rose MR, Bradley TJ (1998) Metabolic reserves and evolved stress resistance in Drosophila melanogaster. Physiol Zool 71:584–594. https://doi.org/10.1086/515963

Article  CAS  PubMed  Google Scholar 

Dobzhansky T, Powell JR (1975) The willistoni group of sibling species of Drosophila. In: King RC (ed) Handbook of Genetics. Plenum Publishing Corporation, New York, pp 589–622

Google Scholar 

Döge JS, Valente VLS, Hofmann PRP (2008) Drosophilids (Diptera) from an Atlantic Forest Area in Santa Catarina, Southern Brazil. Rev Bras Entomol 52:615–624. https://doi.org/10.1590/S0085-56262008000400013

Article  Google Scholar 

Flatt T (2020) Life-histoty and the genetics os fitness components in Drosophila melanogaster. Genetics 214:3–48. https://doi.org/10.1534/genetics.119.300160

Article  CAS  PubMed  Google Scholar 

Flatt T, Heyland A (2011) Mechanisms of life history evolution. Oxford University Press, Oxford, The Genetics and Physiology of Life History Traits and Trade-Offs

Book  Google Scholar 

Flatt T, Tu MP, Tatar M (2005) Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. Bioessays 27:999–1010. https://doi.org/10.1002/bies.20290

Article  CAS  PubMed  Google Scholar 

Flatt T, Amdam GV, Kirkwood TB, Omholt SW (2013) Life-history evolution and the polyphenic regulation of somatic maintenance and survival. Q Rev Biol 88:185–218. https://doi.org/10.1086/671484

Article  PubMed  Google Scholar 

Freire-Maia N, Pavan C (1949) Introdução Ao Estudo Da Drosófila. Cultus 1:3–69

Google Scholar 

Gáliková M, Diesner M, Klepsatel P et al (2015) Energy homeostasis control in Drosophila adipokinetic hormone mutants. Genetics 201:665–683. https://doi.org/10.1534/genetics.115.178897

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goñi B, Remedios M, González-Vainer P, Martínez M, Vilela CR (2012) Species of Drosophila (Diptera: Drosophilidae) attracted to dung and carrion baited pitfall traps in the Uruguayan Eastern Serranías. Zoologia 29:308–317. https://doi.org/10.1590/S1984-46702012000400004

Article  Google Scholar 

Gottschalk MS, De Toni DC, Valente VLS, Hofmann PRP (2007) Changes in Brazilian Drosophilidae (Diptera) assemblages across an urbanisation gradient. Neotrop Entomol 36:848–862. https://doi.org/10.1590/S1519-566X2007000600005

Article  PubMed  Google Scholar 

Grönke S, Beller M, Fellert S, Ramakrishnan H, Jäckle H, Kühnlein RP (2003) Control of fat storage by a Drosophila PAT domain protein. Curr Biol 13:603–606. https://doi.org/10.1016/S0960-9822(03)00175-1

Article  PubMed  Google Scholar 

Grönke S, Müller G, Hirsch J et al (2007) Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol 5:e137. https://doi.org/10.1371/journal.pbio.0050137

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gustani EC, Oliveira APF, Santos MH, Machado LPB, Mateus RP (2015) Demographic structure and evolutionary history of Drosophila ornatifrons Diptera, Drosophilidae) from Atlantic Forest of Southern Brazil. Zool Sci 32:141–150. https://doi.org/10.2108/zs140062

Article  Google Scholar 

Gutierrez E, Wiggins D, Fielding B, Gould AP (2006) Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature 445:275–280. https://doi.org/10.1038/nature05382

Article  CAS  PubMed  Google Scholar 

Gutzeit HO, Zissler D, Grau V, Liphardt M, Heinrich UR (1994) Glycogen stores in mature ovarian follicles and young embryos of Drosophila: ultrastructural changes and some biochemical correlates. Eur J Cell Biol 63:52–60

CAS  PubMed  Google Scholar 

Hadfield JD (2010) MCMC methods for multi-response generalised linear mixed models: the MCM Cglmm R package. J Stat Softw 33:1–22. https://doi.org/10.18637/jss.v033.i02

Article  Google Scholar 

Heier C, Kühnlein RP (2018) Triacylglycerol metabolism in Drosophila melanogaster. Genetics 210:1163–1184. https://doi.org/10.1534/genetics.118.301583

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoang K, Matzkin LM, Bono JM (2015) Transcriptional variation associated with cactus host plant adaptation in Drosophila mettleri populations. Mol Ecol 24:5186–5199. https://doi.org/10.1111/mec.13388

Article  PubMed  Google Scholar 

Hochmüller CJC, Lopes-Da-Silva M, Valente VLS, Schmitz HJ (2010) The Drosophilid fauna of the transition between the Pampa and Atlantic Forest biomes in the state of Rio Grande do Sul, Southern Brazil: first records. Pap Avulsos Zool 50:285–295. https://doi.org/10.1590/S0031-10492010001900001

Article  Google Scholar 

Hoffmann AA, Harshman LG (1999) Desiccation and starvation resistance in Drosophila: patterns of variation at the species, population and intrapopulation levels. Heredity 83:637–643. https://doi.org/10.1046/j.1365-2540.1999.00649.x

Article  PubMed  Google Scholar 

Hughes KA, Leips J (2017) Pleiotropy, constraint, and modularity in the evolution of life histories: insights from genomic analyses. Ann N Y Acad Sci 1389:76–91. https://doi.org/10.1111/nyas.13256

Article  PubMed  Google Scholar 

Jensen K, Mcclure C, Priest NK, Hunt J (2015) Sex-specific effects of protein and carbohydrate intake on reproduction but not lifespan in Drosophila melanogaster. Aging Cell 14:605–615. https://doi.org/10.1111/acel.12333

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaneshiro KY (1969) A study of the relationships of Hawaiian Drosophila species based on the external male genitalia. Univ Texas Publ 6918:55–70

Google Scholar 

Kim KE, Jang T, Lee KP (2020) Combined effects of temperature and macronutrient balance on life-history traits in Drosophila melanogaster: implications for life-history trade-offs and fundamental niche. Oecologia 193:299–309. https://doi.org/10.1007/s00442-020-04666-0

Article  PubMed  Google Scholar 

Koerte S, Keesey IW, Easson MLE, Gershenzon J, Hansson BS, Knaden M (2020) Variable dependency on associated yeast communities influences host range in Drosophila species. Oikos 129:964–982. https://doi.org/10.1111/oik.07180

Article 

留言 (0)

沒有登入
gif