Agritempo (2019) Sistema de Monitoramento Agrometeorológico. https://www.agritempo.gov.br/agritempo/index.jsp. Accessed 23 Nov 2023
ANA (2017) Levantamento da cana-de-açúcar irrigada na região centro-sul do Brasil, Agência Nac. Águas
ANA (2019) Levantamento da cana-de-açúcar irrigada e fertirrigada no Brasil, 2a ed. ed. Braília
Barbosa BG, Sarmento RA, Pereira PS, Pinto CB, de Oliveira Lima CH, da Silva Galdino TV, Santos AA, Picanço MC (2019) Factors affecting thrips (Thysanoptera: Thripidae) population densities in watermelon crops. Fla Entomol 102(1):10–15
Briceño G, Palma G, Durán N (2007) Influence of organic amendment on the biodegradation and movement of pesticides. Crit Rev Environ Sci Technol 37(3):233–271. https://doi.org/10.1080/10643380600987406
Carbonari CA, de Matos AKA, De Brito IPFS, Velini ED, Dayan FE (2020) Impact of green cane harvesting on pest management in sugarcane. Outlooks Pest Manag 31(2):64–73. https://doi.org/10.1564/v30_apr_04
Carvalho HFDS, da Silva TG, dos Santos CV, Silva MJD, Leitão MDM, de Moura MS (2023) Microclimate and irrigation affect the growth dynamics of sugarcane in a semiarid environment. Engenharia Agrícola 43:e20230145. https://doi.org/10.1590/1809-4430-Eng.Agric.v43n6e20230145/2023
Casteliani A, de Fatima Martins L, Cardoso JFM, Silva MSO, da Silva RSA, Chacon-Orozco JG, Casteliani AGB, Půža V, Harakava R, Leite LG (2020) Behavioral aspects of Sphenophorus levis (Coleoptera: Curculionidae), damage to sugarcane and its natural infection by Steinernema carpocapsae (Nematoda: Rhabditidae). Crop Prot 137:105262. https://doi.org/10.1016/j.cropro.2020.105262
Castro SGQ, Dinardo-Miranda LL, Fracasso JV, Bordonal RO, Menandro LMS, Franco HCJ, Carvalho JLN (2019) Changes in soil pest populations caused by sugarcane straw removal in Brazil. BioEnergy Res 12:878–887. https://doi.org/10.1007/s12155-019-10019-4
Chamuene A, Araújo TA, Silva G, Costa TL, Berger PG, Picanço MC (2018) Performance of the natural mortality factors of Aphis gossypii (Hemiptera: Aphididae) as a function of cotton plant variety and phenology. Environ Entomol 47(2):440–447. https://doi.org/10.1093/ee/nvx205
Custódio HH, Martinelli PRP, dos Santos LS (2017) Controle químico e biológico de Sphenophorus levis Vaurie (Coleoptera: Curculionidae) na cultura da cana-de-açúcar. Entomol Mex 4:331–337
Degaspari N, Botelho PSM, de Almeida LC, Castilho HJ (1987) Biologia de Sphenophorus levis Vaurie, 1978 (Col.: Curculionidae), em dieta artificial a no campo. Pesquisa Agropecuária Brasileira 22(6):553–558
Dinardo-Miranda LL, Fracasso JV (2013) Sugarcane straw and the populations of pests and nematodes. Scientia Agricola 70:305–310. https://doi.org/10.1590/S0103-90162013000500012
Dinardo-Miranda LL, Pivetta JP, Fracasso JV (2008) Influência da época de aplicação de nematicidas em soqueiras sobre as populações de nematoides e a produtividade da cana-de-açúcar. Bragantia 67:179–190. https://doi.org/10.1590/S0006-87052008000100022
Dinardo-Miranda LL, Fracasso JV (2010) Effect of insecticides applied at sugarcane planting on Sphenophorus levis Vaurie (Coleoptera: Curculionidae) control and on the yield of first two harvests. In International Society of Sugar Cane Technologists: Proceedings of the XXVIIth Congress, March 7-March 11, 2010, Veracruz, Mexico. Asociación de Técnicos Azucareros de México, AC (ATAM) & The XXVIIth ISSCT Organising Committee
FAO (2021) FAOSTAT. https://www.fao.org/faostat/en/#data/QCL/visualize. Accessed 23 Nov 2023
Fernandes FL, Picanço MC, Campos SO, Bastos CS, Chediak M, Guedes RNC, Da Silva RS (2011) Economic injury level for the coffee berry borer (Coleoptera: Curculionidae: Scolytinae) using attractive traps in Brazilian coffee fields. J Econ Entomol 104(6):1909–1917. https://doi.org/10.1603/EC11032
Article CAS PubMed Google Scholar
Fernandes PM, Alves SB, Magalhães BP, Roberts DW (1989) Efeitos dos fatores físicos e bióticos na conidiogênese e sobrevivência de Beauveria bassiana (Bals.) Vuill. no interior de cadáveres de Cerotoma arcuata (Olivier, 1791) (Coleoptera: chrysomelidae). Anais da Sociedade Entomológica do Brasil, 18(supl.):147–156.
Fidelis EG, do Carmo DDG, Santos AA, de Sá Farias E, da Silva RS, Picanço MC (2018) Coccinellidae, Syrphidae and Aphidoletes are key mortality factors for Myzus persicae in tropical regions: a case study on cabbage crops. Crop Protection 112:288–294. https://doi.org/10.1016/j.cropro.2018.06.015
GBIF (2023) Derived dataset GBIF.org (22 June 2023) Filtered export of GBIF occurrence data.
Girón-Pérez K, Nakano O, Silva AC, Oda-Souza M (2009) Atração de adultos de Sphenophorus levis Vaurie (Coleoptera: Curculionidae) a fragmentos vegetais em diferentes estados de conservação. Neotrop Entomol 38:842–846. https://doi.org/10.1590/S1519-566X2009000600019
Higley LG, Pedigo LP (1993) Economic injury level concepts and their use in sustaining environmental quality. Agr Ecosyst Environ 46(1–4):233–243. https://doi.org/10.1016/0167-8809(93)90027-M
Higley LG, Pedigo LP (1996) The EIL concept. Economic thresholds for integrated pest management. University of Nebraska Press, Lincoln, NE, pp 9–21
IBGE. (2022). Instituto Brasileiro de Geografia e Estatística. Levant. Sist. da produção agrícola safra. https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9201-levantamento-sistematico-da-producao-agricola.html. Accessed 23 Nov 2023
Krechemer FS, Foerster LA (2020) Influence of biotic and abiotic factors on the population fluctuation of Tuta absoluta (Lepidoptera: Gelechiidae) in an organic tomato farming. Int J Trop Insect Sci 40(1):199–208. https://doi.org/10.1007/s42690-019-00070-1
Leite LG, Tavares FM, Botelho PSM, Batista Filho A, Polanczyk RA, Schmidt FS (2012) Eficiência de nematoides entomopatogênicos e inseticidas químicos contra Sphenophorus levis e Leucothyreus sp. em cana-de-açúcar. Pesquisa Agropecuária Tropical 42:40–48. https://doi.org/10.1590/S1983-40632012000100006
Lopes MC, Farias ES, Costa TL, Arcanjo LP, Santos AA, Ribeiro AV, Santos RC, Picanco MC (2019) Economic injury level and sequential sampling plan for Liriomyza huidobrensis management in tomato crops. Crop Prot 124:104848. https://doi.org/10.1016/j.cropro.2019.104848
Macêdo RVBT, Sarmento RA, Pereira PS, Lima CHO, de Deus TLLB, Ribeiro AV, Picanço MC (2019) Sampling plan for Bemisia tabaci (Hemiptera: Aleyrodidae) in melon crops. Florida Entomol 102(1):16–23. https://doi.org/10.1653/024.102.0103
Maina UM, Galadima IB, Gambo FM, Zakaria DJJOE (2018) A review on the use of entomopathogenic fungi in the management of insect pests of field crops. J Entomol Zool Stud 6(1):27–32
Miranda MMM, Picanço MC, Zanuncio JC, Bacci L, Silva ÉMD (2005) Impact of integrated pest management on the population of leafminers, fruit borers, and natural enemies in tomato. Ciência Rural 35:204–208. https://doi.org/10.1590/S0103-84782005000100033
Moura MF, Lopes MC, Pereira RR, Parish JB, Chediak M, de Paulo Arcanjo L, Carmo DG, Picanço MC (2018) Sequential sampling plans and economic injury levels for Empoasca kraemeri on common bean crops at different technological levels. Pest Manag Sci 74(2):398–405. https://doi.org/10.1002/ps.4720
Article CAS PubMed Google Scholar
Naranjo SE, Ellsworth PC (2005) Mortality dynamics and population regulation in Bemisia tabaci. Entomol Exp Appl 116(2):93–108. https://doi.org/10.1111/j.1570-7458.2005.00297.x
Naranjo SE, Ellsworth PC, Frisvold GB (2015) Economic value of biological control in integrated pest management of managed plant systems. Annu Rev Entomol 60:621–645. https://doi.org/10.1146/annurev-ento-010814-021005
Article CAS PubMed Google Scholar
Nobel PS, Long SP (1985) Canopy structure and light interception. In Techniques in bioproductivity and photosynthesis (pp 41–49). Pergamon. https://doi.org/10.1016/B978-0-08-031999-5.50014-5
Oliveira CND, Neves PMOJ, Kawazoe LS (2003) Compatibility between the entomopathogenic fungus Beauveria bassiana and insecticides used in coffee plantations. Scientia Agricola 60:663–667. https://doi.org/10.1590/S0103-90162003000400009
Paes JDS, de Araújo TA, Ramos RS, Soares JRS, de Araújo VC, Picanço MC (2019) Economic injury level for sequential sampling plan of Frankliniella schultzei in bell pepper crops. Crop Prot 123:30–35. https://doi.org/10.1016/j.cropro.2019.05.011
Pavlu FA, Molin JP (2016) Plano de amostragem e distribuição espacial para controle localizado de Sphenophorus Levis em cana-de-açúcar. Acta Sci Agron 38:279–287. https://doi.org/10.4025/actasciagron.v38i3.28599
Pedigo LP, Buntin GD (eds) (1994) Handbook of sampling methods for arthropods in agriculture (No. 04; SB933. 14, P4.). CRC Press, Boca Raton, FL
Pedigo LP, Hutchins SH, Higley LG (1986) Economic injury levels in theory and practice. Annu Rev Entomol 31(1):341–368
Pedigo LP (1996) Entomology and pest management (No. Ed. 2). Prentice-Hall Inc
Pereira PS, Sarmento RA, Galdino TV, Lima CH, Dos Santos FA, Silva J, Santos GR, Picanço MC (2017) Economic injury levels and sequential sampling plans for Frankliniella schultzei in watermelon crops. Pest Manag Sci 73(7):1438–1445. https://doi.org/10.1002/ps.4475
Article CAS PubMed Google Scholar
Picanço MC, Bacci L, Crespo ALB, Miranda MMM, Martins JC (2007) Effect of integrated pest management practices on tomato production and conservation of natural enemies. Agric for Entomol 9(4):327–335. https://doi.org/10.1111/j.1461-9563.2007.00346.x
R Core Team (2022) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing
Ramos RS, de Araújo VC, Pereira RR, Martins JC, Queiroz OS, Silva RS, Picanço MC (2018) Investigation of the lethal and behavioral effects of commercial insecticides on the parasitoid wasp Copidosoma truncatellum. Chemosphere 191:770–778. https://doi.org/10.1016/j.chemosphere.2017.10.113
留言 (0)