Assessment of the Entomopathogenic Potential of Fungal and Bacterial Isolates from Fall Armyworm Cadavers Against Spodoptera frugiperda Caterpillars and the Adult Boll Weevil, Anthonomus grandis

Abbas A, Ullah F, Hafeez M, Han X, Dara MZN, Gul H, Zhao CR (2022) Biological control of fall armyworm. Spodoptera Frugiperda Agron 12:2704. https://doi.org/10.3390/agronomy12112704

Article  CAS  Google Scholar 

Abdel Galil FA, Moharram AM, Mahmoud MA, Hafez WMM (2019) Biocontrol of bean and wheat aphids by fungi isolated from indigenous and invasive insects collected from different locations in minia governorate, Egypt. Egypt Acad J Biol Sci F. Toxicol Pest Control 11:79–90. https://doi.org/10.21608/eajbsf.2019.58771

Article  Google Scholar 

Abdel-Raheem, M (2022) Isolation, mass production and application of entomopathogenic fungi for insect pests control. In: El-Wakeil N, Saleh M, Abu-hashim M (eds.) Cottage Industry of Biocontrol Agents and Their Applications: Practical Aspects to Deal Biologically with Pests and Stresses Facing Strategic Crops. Springer International Publishing, pp 231–251

Aggarwal C, Paul S, Nain V, Tripathi V, Paul B, Khan MA (2021) Comparative response of Spodoptera litura challenged per os with Serratia marcescens strains differing in virulence. J Invertebr Pathol 183:107562. https://doi.org/10.1016/j.jip.2021.107562

Article  CAS  PubMed  Google Scholar 

Akutse KS, Khamis FM, Ambele FC, Kimemia JW, Ekesi S, Subramanian S (2020) Combining insect pathogenic fungi and a pheromone trap for sustainable management of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). J Invertebr Pathol 177:107477. https://doi.org/10.1016/j.jip.2020.107477

Article  CAS  PubMed  Google Scholar 

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Article  CAS  PubMed  Google Scholar 

Anitha TS, Palanivelu P (2013) Purification and characterization of an extracellular keratinolytic protease from a new isolate of Aspergillus parasiticus. Protein Expr Purif 88:214–220. https://doi.org/10.1016/j.pep.2013.01.007

Article  CAS  PubMed  Google Scholar 

Asimakis E, Doudoumis V, Gouvi G, Tsiamis G (2019) Draft genome sequence of Enterobacter hormaechei ENT5, a component of the symbiotic community of Tephritid flies. Microbiol Resour Announc 8:10. https://doi.org/10.1128/MRA.01364-19

Article  Google Scholar 

Ayra-Pardo C, Huang S, Kan Y, Wright D J (2021) Impact of invasive fall armyworm on plant and arthropod communities and implications for crop protection. Int J Pest Manag 1–12. https://doi.org/10.1080/09670874.2021.1968534

Ayres JS, Schneider DS (2009) The role of anorexia in resistance and tolerance to infections in Drosophila. PLOS Biol 7:e1000150. https://doi.org/10.1371/journal.pbio.1000150

Article  CAS  PubMed  PubMed Central  Google Scholar 

Becchimanzi A, Nicoletti R (2022) Aspergillus-bees: a dynamic symbiotic association. Front Microbiol 13:968963. https://doi.org/10.3389/fmicb.2022.968963

Article  PubMed  PubMed Central  Google Scholar 

Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516. https://doi.org/10.1128/cmr.16.3.497-516.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18. https://doi.org/10.1007/s00253-009-2092-7

Article  CAS  PubMed  Google Scholar 

Bhardwaj K, Meneely JP, Haughey SA, Dean M, Wall P, Zhang G, Baker B, Elliott CT (2023) Risk assessments for the dietary intake aflatoxins in food: a systematic review (2016–2022). Food Control 149:109687. https://doi.org/10.1016/j.foodcont.2023.109687

Article  CAS  Google Scholar 

Bleicher E, Quintela ED, de Oliveira ISR, Quinderé MAW (1994) Efeito do fungo Beauveria bassiana (Bals.) Vuill. e inseticidas na população do bicudo do algodoeiro, Anthonomus grandis Boh. An Soc Entomol Bras 23:131–134. https://doi.org/10.37486/0301-8059.v23i1.918

Article  Google Scholar 

Bonaterra A, Badosa E, Daranas N, Francés J, Roselló G, Montesinos E (2022) Bacteria as biological control agents of plant diseases. Microorganisms 10:1759. https://doi.org/10.3390/microorganisms10091759

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bosso L, Scelza R, Varlese R, Meca G, Testa A, Rao MA, Cristinzio G (2016) Assessing the effectiveness of Byssochlamys nivea and Scopulariopsis brumptii in pentachlorophenol removal and biological control of two Phytophthora species. Fungal Biol 120:645–653. https://doi.org/10.1016/j.funbio.2016.01.004

Article  PubMed  Google Scholar 

Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts. Nat Rev Microbiol 8:218–230. https://doi.org/10.1038/nrmicro2262

Brzezinska MS, Jankiewicz U (2012) Production of antifungal chitinase by Aspergillus niger LOCK 62 and its potential role in the biological control. Curr Microbiol 65:666–672. https://doi.org/10.1007/s00284-012-0208-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burtet LM, Bernardi O, Melo AA, Pes MP, Strahl TT, Guedes JVC (2017) Managing fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil. Pest Manag Sci 73:2569–2577. https://doi.org/10.1002/ps.4660

Article  CAS  PubMed  Google Scholar 

Chaitanya RK, Shashank K, Sridevi P (2016) Oxidative stress in invertebrate systems. Free Radicals Dis 19

Chambers MC, Song KH, Schneider DS (2012) Listeria monocytogenes infection causes metabolic shifts in Drosophila melanogaster. PLoS One 7:e50679. https://doi.org/10.1371/journal.pone.0050679

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chavda KD, Chen L, Fouts DE, Sutton G, Brinkac L, Jenkins SG, Bonomo RA, Adams MD, Kreiswirth BN (2016) Comprehensive genome analysis of carbapenemase-producing Enterobacter spp.: new insights into phylogeny, population structure, and resistance mechanisms. mBio 7:10–1128. https://doi.org/10.1128/mBio.02093-16

Article  Google Scholar 

Cheng H, Jiang N (2006) Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol Lett 28:55–59. https://doi.org/10.1007/s10529-005-4688-z

Article  CAS  PubMed  Google Scholar 

Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, Dimopoulos G (2011) Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332:855–858. https://doi.org/10.1126/science.1201618

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cruz I (1993) Recomendações Técnicas para o Cultivo do Milho: Principais Pragas e Seu Controle, Embrapa: Brasília, pp. 1–204

Cruz I (2000) Métodos de criação de agentes entomófagos de Spodoptera frugiperda (J. E. Smith). In Controle Biológico de Pragas: Produção Massal e Controle de Qualidade, Bueno, V. H. P., Ed.; UFLA, Lavras, pp. 111–135

da Silva CF, Vitorino LC, Soares MA, Souchie EL (2018) Multifunctional potential of endophytic and rhizospheric microbial isolates associated with Butia purpurascens roots for promoting plant growth. Antonie Leeuwenhoek 111:2157–2174. https://doi.org/10.1007/s10482-018-1108-7

Article  CAS  PubMed  Google Scholar 

Da Silva CF, Vitorino LC, Pinheiro LC, De Siqueira KA, Soares MA, Souchie EL (2021) Endophytic radicular and rhizospheric microbiota associated with the endemic Cerrado palm, Butia archeri. Pak J Bot 53:1487–1500. https://doi.org/10.30848/PJB2021-4(23)

Article  Google Scholar 

Darriba D, Taboada GL, Doallo R, Posada D (2012) JModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772. https://doi.org/10.1038/nmeth.2109

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Groote H, Kimenju SC, Munyua B, Palmas S, Kassie M, Bruce A (2020) Spread and impact of fall armyworm (Spodoptera frugiperda J.E. Smith) in maize production areas of Kenya. Agric Ecosyst Environ 292:106804. https://doi.org/10.1016/j.agee.2019.106804

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dionne MS, Pham LN, Shirasu-Hiza M, Schneider DS (2006) Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila. Curr Biol 16:1977–1985. https://doi.org/10.1016/j.cub.2006.08.052

Article  CAS  PubMed  Google Scholar 

Elnahal ASM, El-Saadony MT, Saad AM, Desoky ESM, El-Tahan AM, Rady MM, AbuQamar SF, El-Tarabily KA (2022) The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: a review. Eur J Plant Pathol 162:759–792. https://doi.org/10.1007/s10658-021-02393-7

Article 

留言 (0)

沒有登入
gif