Unsupervised restoration of a complex learned behavior after large-scale neuronal perturbation

Masset, P., Qin, S. & Zavatone-Veth, J. A. Drifting neuronal representations: bug or feature? Biol. Cybern. 116, 253–266 (2022).

Article  PubMed  Google Scholar 

Mongillo, G., Rumpel, S. & Loewenstein, Y. Intrinsic volatility of synaptic connections—a challenge to the synaptic trace theory of memory. Curr. Opin. Neurobiol. 46, 7–13 (2017).

Article  CAS  PubMed  Google Scholar 

Nottebohm, F., Stokes, T. M. & Leonard, C. M. Central control of song in the canary, Serinus canarius. J. Comp. Neurol. 165, 457–486 (1976).

Article  CAS  PubMed  Google Scholar 

Nottebohm, F., Kelley, D. B. & Paton, J. A. Connections of vocal control nuclei in the canary telencephalon. J. Comp. Neurol. 207, 344–357 (1982).

Article  CAS  PubMed  Google Scholar 

Hahnloser, R. H. R., Kozhevnikov, A. A. & Fee, M. S. An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419, 65–70 (2002).

Article  CAS  PubMed  Google Scholar 

Long, M. A. & Fee, M. S. Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature 456, 189–194 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamaguchi, K., Tanaka, M. & Mooney, R. A distributed recurrent network contributes to temporally precise vocalizations. Neuron 91, 680–693 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coleman, M. J. & Vu, E. T. Recovery of impaired songs following unilateral but not bilateral lesions of nucleus uvaeformis of adult zebra finches. J. Neurobiol. 63, 70–89 (2005).

Article  PubMed  Google Scholar 

Thompson, J. A., Wu, W., Bertram, R. & Johnson, F. Auditory-dependent vocal recovery in adult male zebra finches is facilitated by lesion of a forebrain pathway that includes the basal ganglia. J. Neurosci. 27, 12308–12320 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poole, B., Markowitz, J. E. & Gardner, T. J. The song must go on: resilience of the songbird vocal motor pathway. PLoS ONE 7, e38173 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Otchy, T. M. et al. Acute off-target effects of neural circuit manipulations. Nature 528, 358–363 (2015).

Article  CAS  PubMed  Google Scholar 

Long, M. A., Jin, D. Z. & Fee, M. S. Support for a synaptic chain model of neuronal sequence generation. Nature 468, 394–399 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren, D. et al. A prokaryotic voltage-gated sodium channel. Science 294, 2372–2375 (2001).

Article  CAS  PubMed  Google Scholar 

Liberti, W. A. et al. Unstable neurons underlie a stable learned behavior. Nat. Neurosci. 19, 1665–1671 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Markowitz, J. E. et al. Mesoscopic patterns of neural activity support songbird cortical sequences. PLoS Biol. 13, e1002158 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Sim, S., Antolin, S., Lin, C.-W., Lin, Y. & Lois, C. Increased cell-intrinsic excitability induces synaptic changes in new neurons in the adult dentate gyrus that require Npas4. J. Neurosci. 33, 7928–7940 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin, C.-W. et al. Genetically increased cell-intrinsic excitability enhances neuronal integration into adult brain circuits. Neuron 65, 32–39 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue, M., Atallah, B. V. & Scanziani, M. Equalizing excitation–inhibition ratios across visual cortical neurons. Nature 511, 596–600 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at arXiv https://doi.org/10.48550/arXiv.1802.03426 (2018).

Goffinet, J., Brudner, S., Mooney, R. & Pearson, J. Low-dimensional learned feature spaces quantify individual and group differences in vocal repertoires. eLife 10, e67855 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sainburg, T., Thielk, M. & Gentner, T. Q. Finding, visualizing, and quantifying latent structure across diverse animal vocal repertoires. PLoS Comput. Biol. 16, e1008228 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107 (2004).

Article  CAS  PubMed  Google Scholar 

Sweeney, S. T., Broadie, K., Keane, J., Niemann, H. & O’Kane, C. J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351 (1995).

Article  CAS  PubMed  Google Scholar 

Tchernichovski, O., Nottebohm, F., Ho, C. E., Pesaran, B. & Mitra, P. P. A procedure for an automated measurement of song similarity. Anim. Behav. 59, 1167–1176 (2000).

Article  CAS  PubMed  Google Scholar 

Tchernichovski, O., Mitra, P. P., Lints, T. & Nottebohm, F. Dynamics of the vocal imitation process: how a zebra finch learns its song. Science 291, 2564–2569 (2001).

Article  CAS  PubMed  Google Scholar 

Jun, J. K. & Jin, D. Z. Development of neural circuitry for precise temporal sequences through spontaneous activity, axon remodeling, and synaptic plasticity. PLoS ONE 2, e723 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Egger, R. et al. Local axonal conduction shapes the spatiotemporal properties of neural sequences. Cell 183, 537–548.e12 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fiete, I. R., Senn, W., Wang, C. Z. H. & Hahnloser, R. H. R. Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity. Neuron 65, 563–576 (2010).

Article  CAS  PubMed  Google Scholar 

Veliz-Cuba, A., Shouval, H. Z., Josić, K. & Kilpatrick, Z. P. Networks that learn the precise timing of event sequences. J. Comput. Neurosci. 39, 235–254 (2015).

Article  PubMed  Google Scholar 

Murray, J. M. & Escola, G. S. Learning multiple variable-speed sequences in striatum via cortical tutoring. eLife 6, e26084 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Kim, J. & Tsien, R. W. Synapse-specific adaptations to inactivity in hippocampal circuits achieve homeostatic gain control while dampening network reverberation. Neuron 58, 925–937 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jarvis, E. D., Scharff, C., Grossman, M. R., Ramos, J. A. & Nottebohm, F. For whom the bird sings: context-dependent gene expression. Neuron 21, 775–788 (1998).

Article  CAS  PubMed  Google Scholar 

Kozhevnikov, A. A. & Fee, M. S. Singing-related activity of identified HVC neurons in the zebra finch. J. Neurophysiol. 97, 4271–4283 (2007).

Article  PubMed  Google Scholar 

Hirase, H., Leinekugel, X., Czurkó, A., Csicsvari, J. & Buzsáki, G. Firing rates of hippocampal neurons are preserved during subsequent sleep episodes and modified by novel awake experience. Proc. Natl Acad. Sci. USA 98, 9386–9390 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Slomowitz, E. et al. Interplay between population firing stability and single neuron dynamics in hippocampal networks. eLife 4, e04378 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Trouche, S. et al. Recoding a cocaine-place memory engram to a neutral engram in the hippocampus. Nat. Neurosci. 19, 564–567 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hartman, K. N., Pal, S. K., Burrone, J. & Murthy, V. N. Activity-dependent regulation of inhibitory synaptic transmission in hippocampal neurons. Nat. Neurosci. 9, 642–649 (2006).

Article  CAS 

留言 (0)

沒有登入
gif