Triiodothyronine Supplementation for Children Undergoing Cardiopulmonary Bypass: A Meta-Analysis

Bettendorf M, Schmidt KG, Tiefenbacher U et al (1997) Transient Secondary Hypothyroidism in Children after Cardiac Surgery. Pediatr Res 41:375–379. https://doi.org/10.1203/00006450-199703000-000122

Article  CAS  PubMed  Google Scholar 

Klemperer JD, Klein I, Gomez M et al (1995) Thyroid Hormone Treatment after Coronary-Artery Bypass Surgery. New Engl J Medicine 333:1522–1527. https://doi.org/10.1056/nejm1995120733323023

Article  CAS  Google Scholar 

Klemperer JD, Klein IL, Ojama K et al (1996) Triiodothyronine therapy lowers the incidence of atrial fibrillation after cardiac operations. Ann Thorac Surg 61:1323–1329. https://doi.org/10.1016/0003-4975(96)00102-64

Article  CAS  PubMed  Google Scholar 

Mullis-Jansson SL, Argenziano M, Corwin S et al (1999) A randomized double-blind study of the effect of triiodothyronine on cardiac function and morbidity after coronary bypass surgery. J Thorac Cardiovasc Surg 117:1128–1134. https://doi.org/10.1016/s0022-5223(99)70249-75

Article  CAS  PubMed  Google Scholar 

Files MD, Kajimoto M, Priddy CMO et al (2014) Triiodothyronine Facilitates Weaning From Extracorporeal Membrane Oxygenation by Improved Mitochondrial Substrate Utilization. J Am Heart Assoc 3:e000680. https://doi.org/10.1161/jaha.113.0006806

Article  PubMed  PubMed Central  Google Scholar 

Olson AK, Bouchard B, Ning X-H et al (2012) Triiodothyronine increases myocardial function and pyruvate entry into the citric acid cycle after reperfusion in a model of infant cardiopulmonary bypass. Am J Physiol-heart C 302:H1086–H1093. https://doi.org/10.1152/ajpheart.00959.20117

Article  CAS  Google Scholar 

Bettendorf M, Schmidt KG, Grulich-Henn J et al (2000) Tri-iodothyronine treatment in children after cardiac surgery: a double-blind, randomised, placebo-controlled study. Lancet 356:529–534. https://doi.org/10.1016/s0140-6736(00)02576-9

Article  CAS  PubMed  Google Scholar 

Chowdhury D, Ojamaa K, Parnell VA et al (2001) A prospective randomized clinical study of thyroid hormone treatment after operations for complex congenital heart disease. J Thorac Cardiovasc Surg 122:1023–1025. https://doi.org/10.1067/mtc.2001.1161929

Article  CAS  PubMed  Google Scholar 

Mackie AS, Booth KL, Newburger JW et al (2005) A randomized, double-blind, placebo-controlled pilot trial of triiodothyronine in neonatal heart surgery. J Thorac Cardiovasc Surg 130:810–816. https://doi.org/10.1016/j.jtcvs.2005.04.02510

Article  CAS  PubMed  Google Scholar 

Marwali EM, Boom CE, Budiwardhana N et al (2017) Oral Triiodothyronine for Infants and Children Undergoing Cardiopulmonary Bypass. Ann Thorac Surg 104:688–695. https://doi.org/10.1016/j.athoracsur.2017.01.00111

Article  PubMed  Google Scholar 

Portman MA, Fearneyhough C, Ning X-H et al (2000) Triiodothyronine repletion in infants during cardiopulmonary bypass for congenital heart disease. J Thorac Cardiovasc Surg 120:604–608. https://doi.org/10.1067/mtc.2000.10890012

Article  CAS  PubMed  Google Scholar 

Talwar S, Bhoje A, Khadagawat R et al (2018) Oral thyroxin supplementation in infants undergoing cardiac surgery: A double-blind placebo-controlled randomized clinical trial. J Thorac Cardiovasc Surg 156:1209-1217.e3. https://doi.org/10.1016/j.jtcvs.2018.05.04413

Article  CAS  PubMed  Google Scholar 

Kumar A, Tiwari N, Ramamurthy HR et al (2021) A prospective randomized clinical study of perioperative oral thyroid hormone treatment for children undergoing surgery for congenital heart diseases. Ann Pediatric Cardiol 14:170–177. https://doi.org/10.4103/apc.apc_193_2014

Article  Google Scholar 

Portman MA, Slee A, Olson AK et al (2010) Triiodothyronine Supplementation in Infants and Children Undergoing Cardiopulmonary Bypass (TRICC). Circulation 122:S224–S233. https://doi.org/10.1161/circulationaha.109.92639415

Article  CAS  PubMed  PubMed Central  Google Scholar 

Portman MA, Slee AE, Roth SJ et al (2022) Triiodothyronine Supplementation in Infants Undergoing Cardiopulmonary Bypass: A Randomized Controlled Trial. Seminars Thorac Cardiovasc Surg. https://doi.org/10.1053/j.semtcvs.2022.01.00516

Article  Google Scholar 

Marwali EM, Boom CE, Sakidjan I et al (2013) Oral Triiodothyronine Normalizes Triiodothyronine Levels After Surgery for Pediatric Congenital Heart Disease&ast. Pediatr Crit Care Med 14:701–708. https://doi.org/10.1097/pcc.0b013e3182917f8717

Article  PubMed  Google Scholar 

Marwali EM, Lopolisa A, Sani AA et al (2022) Indonesian Study: Triiodothyronine for Infants Less than 5 Months Undergoing Cardiopulmonary Bypass. Pediatr Cardiol 43:726–734. https://doi.org/10.1007/s00246-021-02779-818

Article  PubMed  Google Scholar 

Tharmapoopathy M, Thavarajah A, Kenny RPW et al (2022) Efficacy and Safety of Triiodothyronine Treatment in Cardiac Surgery or Cardiovascular Diseases: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Thyroid. https://doi.org/10.1089/thy.2021.060919

Article  PubMed  Google Scholar 

Flores S, Loomba RS, Checchia PA et al (2020) Thyroid Hormone (Triiodothyronine) Therapy in Children After Congenital Heart Surgery: A Meta-Analysis. Seminars Thorac Cardiovasc Surg 32:87–95. https://doi.org/10.1053/j.semtcvs.2019.05.02020

Article  Google Scholar 

Jenkins KJ, Gauvreau K, Newburger JW et al (2002) Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg 123:110–118. https://doi.org/10.1067/mtc.2002.11906421

Article  PubMed  Google Scholar 

Cantinotti M, Lorenzoni V, Storti S et al (2013) Thyroid and Brain Natriuretic Peptide Response in Children Undergoing Cardiac Surgery for Congenital Heart Disease: – Age-Related Variations and Prognostic Value –. Circ J 77:188–197. https://doi.org/10.1253/circj.cj-12-083422

Article  CAS  PubMed  Google Scholar 

Kaptein EM, Beale E, Chan LS (2009) Thyroid hormone therapy for obesity and nonthyroidal illnesses: a systematic review. J Clin Endocrinol Metabolism 94:3663–3675. https://doi.org/10.1210/jc.2009-0899

Article  CAS  Google Scholar 

Peeters RP (2007) Non thyroidal illness: to treat or not to treat? Ann D’endocrinologie 68:224–228. https://doi.org/10.1016/j.ando.2007.06.01124

Article  CAS  Google Scholar 

Groot LJD (2006) Non-Thyroidal Illness Syndrome is a Manifestation of Hypothalamic-Pituitary Dysfunction, and in View of Current Evidence, Should be Treated with Appropriate Replacement Therapies. Crit Care Clin 22:57–86. https://doi.org/10.1016/j.ccc.2005.10.00125

Article  PubMed  Google Scholar 

Jonklaas J, Bianco AC, Bauer AJ et al (2014) Guidelines for the Treatment of Hypothyroidism: Prepared by the American Thyroid Association Task Force on Thyroid Hormone Replacement. Thyroid 24:1670–1751. https://doi.org/10.1089/thy.2014.002826

Article  PubMed  PubMed Central  Google Scholar 

Radman M, Portman M (2016) Thyroid Hormone in the Pediatric Intensive Care Unit. J Pediatr Intensiv Care 05:154–161. https://doi.org/10.1055/s-0036-158328027

Article  Google Scholar 

Huang SA, Bianco AC (2008) Reawakened interest in type III iodothyronine deiodinase in critical illness and injury. Nat Clin Pr Endocrinol Metab 4:148–155. https://doi.org/10.1038/ncpendmet072728

Article  CAS  Google Scholar 

Heinle JS, Diaz LK, Fox LS, Tex F, the CCMC Fort Worth, (1997) Early extubation after cardiac operations in neonates and young infants. J Thorac Cardiovasc Surg 114:413–418. https://doi.org/10.1016/s0022-5223(97)70187-929

Article  CAS  PubMed  Google Scholar 

Morales DLS, Carberry KE, Heinle JS et al (2008) Extubation in the Operating Room After Fontan’s Procedure: Effect on Practice and Outcomes. Ann Thorac Surg 86:576–582. https://doi.org/10.1016/j.athoracsur.2008.02.01030

Article  PubMed  Google Scholar 

Chang R-KR, Chen AY, Klitzner TS (2000) Factors Associated With Age at Operation for Children With Congenital Heart Disease. Pediatrics 105:1073–1081. https://doi.org/10.1542/peds.105.5.107331

Article  CAS  PubMed  Google Scholar 

Marwali EM, Kekalih A, Yuliarto S et al (2022) Paediatric COVID-19 mortality: a database analysis of the impact of health resource disparity. Bmj Paediatr Open 6:e001657. https://doi.org/10.1136/bmjpo-2022-00165732

Article  PubMed  PubMed Central  Google Scholar 

Marwali EM, Kekalih A, Haas NA (2012) The effect of malnutrition on T3 levels in pediatric patients undergoing congenital heart surgery. Critics Care & Shock 15:103–110

Google Scholar 

Ross FJ, Radman M, Jacobs ML et al (2020) Associations between anthropometric indices and outcomes of congenital heart operations in infants and young children: An analysis of data from the Society of Thoracic Surgeons Database. Am Hear J 224:85–97. https://doi.org/10.1016/j.ahj.2020.03.01234

Article  Google Scholar 

Ross F, Latham G, Joffe D et al (2017) Preoperative malnutrition is associated with increased mortality and adverse outcomes after paediatric cardiac surgery. Cardiol Young 27:1716–1725. https://doi.org/10.1017/s104795111700106835

Article  PubMed  PubMed Central  Google Scholar 

Radman M, Mack R, Barnoya J et al (2014) The effect of preoperative nutritional status on postoperative outcomes in children undergoing surgery for congenital heart defects in San Francisco (UCSF) and Guatemala City (UNICAR). J Thorac Cardiovasc Surg 147:442–450. https://doi.org/10.1016/j.jtcvs.2013.03.02336

Article  PubMed  Google Scholar 

Zimmermann-Belsing T, Brabant G, Holst J, Feldt-Rasmussen U (2003) Circulating leptin and thyroid dysfunction. Eur J Endocrinol 149:257–271. https://doi.org/10.1530/eje.0.149025737

留言 (0)

沒有登入
gif