Augmenting locomotor perception by remapping tactile foot sensation to the back

Rognini G et al. Jul., Multisensory bionic limb to achieve prosthesis embodiment and reduce distorted phantom limb perceptions, J Neurol Neurosurg Psychiatry, vol. 90, no. 7, pp. 833–836, 2019, https://doi.org/10.1136/jnnp-2018-318570.

Clites TR, et al. Proprioception from a neurally controlled lower-extremity prosthesis. Sci Transl Med. May 2018;10(443):eaap8373. https://doi.org/10.1126/scitranslmed.aap8373.

Lopez C, Halje P, Blanke O. Body ownership and embodiment: Vestibular and multisensory mechanisms, Neurophysiologie Clinique/Clinical Neurophysiology, vol. 38, no. 3, pp. 149–161, Jun. 2008, https://doi.org/10.1016/j.neucli.2007.12.006.

Gallagher S. The Natural Philosophy of Agency, Philosophy Compass, vol. 2, no. 2, pp. 347–357, Mar. 2007, https://doi.org/10.1111/j.1747-9991.2007.00067.x.

Kannape OA, Lenggenhager B, Engineered embodiment: Comment on ‘The embodiment of assistive devices—from wheelchair to exoskeleton’ by, Pazzaglia M, Molinari M. Physics of Life Reviews, vol. 16, pp. 181–183, Mar. 2016, https://doi.org/10.1016/j.plrev.2016.01.011.

Makin TR, de Vignemont F, Micera S. Soft Embodiment for Engineering Artificial Limbs, Trends in Cognitive Sciences, vol. 24, no. 12, pp. 965–968, Dec. 2020, https://doi.org/10.1016/j.tics.2020.09.008.

Schütz-Bosbach S, Prinz W. Perceptual resonance: action-induced modulation of perception, Trends in Cognitive Sciences, vol. 11, no. 8, pp. 349–355, Aug. 2007, https://doi.org/10.1016/j.tics.2007.06.005.

Jeannerod M. The mechanism of self-recognition in humans. Behav Brain Res. Jun. 2003;142:1–2. https://doi.org/10.1016/S0166-4328(02)00384-4.

Coste A et al. Mar., Decoding identity from motion: how motor similarities colour our perception of self and others, Psychological Research, vol. 85, no. 2, pp. 509–519, 2021, https://doi.org/10.1007/s00426-020-01290-8.

Fadaei JA, et al. Cogno-Vest: a Torso-Worn, Force Display to experimentally induce specific hallucinations and related bodily sensations. IEEE Trans Cogn Dev Syst. 2021;1–1. https://doi.org/10.1109/TCDS.2021.3051395.

Jouybari AF, Franza M, Kannape OA, Hara M, Blanke O. Tactile spatial discrimination on the torso using vibrotactile and force stimulation, Exp Brain Res, vol. 239, no. 11, pp. 3175–3188, Nov. 2021, https://doi.org/10.1007/s00221-021-06181-x.

Winfree KN, Pretzer-Aboff I, Hilgart D, Aggarwal R, Behari M, Agrawal SK. The Effect of Step-Synchronized Vibration on Patients With Parkinson’s Disease: Case Studies on Subjects With Freezing of Gait or an Implanted Deep Brain Stimulator, IEEE Trans. Neural Syst. Rehabil. Eng, vol. 21, no. 5, pp. 806–811, Sep. 2013, https://doi.org/10.1109/TNSRE.2013.2250308.

Afzal MR, Oh M-K, Lee C-H, Park YS, Yoon J. A portable gait asymmetry Rehabilitation System for individuals with stroke using a Vibrotactile Feedback. Biomed Res Int. 2015;2015:1–16. https://doi.org/10.1155/2015/375638.

Article  Google Scholar 

Ling J et al. A Haptic-Based Perception-Empathy Biofeedback System with Vibration Transition: Verifying the Attention Amount, in., 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada: IEEE, Jul. 2020, pp. 3779–3782. https://doi.org/10.1109/EMBC44109.2020.9176213.

Crea S, Edin BB, Knaepen K, Meeusen R, Vitiello N. Time-Discrete Vibrotactile Feedback Contributes to Improved Gait Symmetry in Patients With Lower Limb Amputations: Case Series, Physical Therapy, vol. 97, no. 2, pp. 198–207, Feb. 2017, https://doi.org/10.2522/ptj.20150441.

Konczak J et al. Nov., Proprioception and Motor Control in Parkinson’s Disease, Journal of Motor Behavior, vol. 41, no. 6, pp. 543–552, 2009, https://doi.org/10.3200/35-09-002.

Jeannerod M, Pacherie E. Agency, simulation and self-identification. Mind Lang. 2004;19:34.

Article  Google Scholar 

Kannape OA, Barré A, Aminian K, Blanke O. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment. PLoS ONE. 2014;9(1):e85560. https://doi.org/10.1371/journal.pone.0085560.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blakemore S-J, Wolpert DM, Frith CD. Abnormalities in the awareness of action, Trends in Cognitive Sciences, vol. 6, no. 6, pp. 237–242, Jun. 2002, https://doi.org/10.1016/S1364-6613(02)01907-1.

Franck N, et al. Defective recognition of one’s own actions in patients with Schizophrenia. AJP. Mar. 2001;158(3):454–9. https://doi.org/10.1176/appi.ajp.158.3.454.

Daprati E, et al. Looking for the agent: an investigation into consciousness of action and self-consciousness in schizophrenic patients. Cognition. Dec. 1997;65(1):71–86. https://doi.org/10.1016/S0010-0277(97)00039-5.

van den Bos E, Jeannerod M. Sense of body and sense of action both contribute to self-recognition, Cognition, vol. 85, no. 2, pp. 177–187, Sep. 2002, https://doi.org/10.1016/S0010-0277(02)00100-2.

Farrer C, Franck N, Georgieff N, Frith CD, Decety J, Jeannerod M. Modulating the experience of agency: a positron emission tomography study. NeuroImage. Feb. 2003;18(2):324–33. https://doi.org/10.1016/S1053-8119(02)00041-1.

Nielsen T. Volition: a New Experimental Approach. Scandinavian J Psychol. 1963;4:6.

Article  Google Scholar 

Shimada S, Qi Y, Hiraki K. Detection of visual feedback delay in active and passive self-body movements, Exp Brain Res, vol. 201, no. 2, pp. 359–364, Mar. 2010, https://doi.org/10.1007/s00221-009-2028-6.

Tsakiris M, Haggard P, Franck N, Mainy N, Sirigu A. A specific role for efferent information in self-recognition, Cognition, vol. 96, no. 3, pp. 215–231, Jul. 2005, https://doi.org/10.1016/j.cognition.2004.08.002.

Jeannerod M, Pacherie E. Agency, Simulation and Self-identification. Mind Lang. Apr. 2004;19(2):113–46. https://doi.org/10.1111/j.1468-0017.2004.00251.x.

Slachevsky A, Pillon B, Fourneret P, Pradat-Diehl P, Jeannerod M, Dubois B. Preserved Adjustment but Impaired Awareness in a Sensory-Motor Conflict following Prefrontal Lesions, Journal of Cognitive Neuroscience, vol. 13, no. 3, pp. 332–340, Apr. 2001, https://doi.org/10.1162/08989290151137386.

Knoblich G, Repp BH. Inferring agency from sound. Cognition. May 2009;111(2):248–62. https://doi.org/10.1016/j.cognition.2009.02.007.

Repp BH, Knoblich G. Toward a psychophysics of agency: detecting gain and loss of control over auditory action effects. J Exp Psychol Hum Percept Perform. 2007;33(2):469–82. https://doi.org/10.1037/0096-1523.33.2.469.

Article  PubMed  Google Scholar 

Sato A, Yasuda A. Illusion of sense of self-agency: discrepancy between the predicted and actual sensory consequences of actions modulates the sense of self-agency, but not the sense of self-ownership, Cognition, vol. 94, no. 3, pp. 241–255, Jan. 2005, https://doi.org/10.1016/j.cognition.2004.04.003.

Sato A. Action observation modulates auditory perception of the consequence of others’ actions. Conscious Cogn. Dec. 2008;17(4):1219–27. https://doi.org/10.1016/j.concog.2008.01.003.

Suzuki K, Lush P, Seth AK, Roseboom W. Intentional Binding Without Intentional Action, Psychol Sci, vol. 30, no. 6, pp. 842–853, Jun. 2019, https://doi.org/10.1177/0956797619842191.

Haggard P, Clark S, Kalogeras J. Voluntary action and conscious awareness, Nat Neurosci, vol. 5, no. 4, pp. 382–385, Apr. 2002, https://doi.org/10.1038/nn827.

Haggard P. Human volition: towards a neuroscience of will, Nat Rev Neurosci, vol. 9, no. 12, pp. 934–946, Dec. 2008, https://doi.org/10.1038/nrn2497.

Oishi H, Tanaka K, Watanabe K. Feedback of action outcome retrospectively influences sense of agency in a continuous action task, PLoS ONE, vol. 13, no. 8, p. e0202690, Aug. 2018, https://doi.org/10.1371/journal.pone.0202690.

Knoblich G, Kircher TTJ. Deceiving oneself about being in control: conscious detection of changes in Visuomotor Coupling. J Exp Psychol Hum Percept Perform. Aug. 2004;30(4):657–66. https://doi.org/10.1037/0096-1523.30.4.657.

Salomon R, Szpiro-Grinberg S, Lamy D. Self-motion holds a special Status in Visual Processing. PLoS ONE. Oct. 2011;6(10):e24347. https://doi.org/10.1371/journal.pone.0024347.

Kannape OA, Perrig S, Rossetti AO, Blanke O. Distinct locomotor control and awareness in awake sleepwalkers. Curr Biol. Oct. 2017;27(20):R1102–4. https://doi.org/10.1016/j.cub.2017.08.060.

Salomon R et al. Mar., Agency Deficits in a Human Genetic Model of Schizophrenia: Insights From 22q11DS Patients, Schizophrenia Bulletin, vol. 48, no. 2, pp. 495–504, 2022, https://doi.org/10.1093/schbul/sbab143.

Rothacher Y et al. Apr., Dissociation of motor control from motor awareness in awake sleepwalkers: An EEG study in virtual reality, Cortex, vol. 149, pp. 165–172, 2022, https://doi.org/10.1016/j.cortex.2021.12.016.

Menzer F, Brooks A, Halje P, Faller C, Vetterli M, Blanke O. Feeling in control of your footsteps: Conscious gait monitoring and the auditory consequences of footsteps, Cognitive Neuroscience, 2010, [Online]. Available: http://www.informaworld.com/https://doi.org/10.1080/17588921003743581.

Kannape OA, Schwabe L, Tadi T, Blanke O. The limits of agency in walking humans. Neuropsychologia. May 2010;48:1628–36. https://doi.org/10.1016/j.neuropsychologia.2010.02.005.

Kannape OA, Blanke O. Self in motion: sensorimotor and cognitive mechanisms in gait agency. J Neurophysiol. Oct. 2013;110(8):1837–47. https://doi.org/10.1152/jn.01042.2012.

Monti A, Porciello G, Tieri G, Aglioti SM. The ‘embreathment’ illusion highlights the role of breathing in corporeal awareness. J Neurophysiol. Jan. 2020;123(1):420–7. https://doi.org/10.1152/jn.00617.2019.

Adler D, Herbelin B, Similowski T, Blanke O. Breathing and sense of self: visuo-respiratory conflicts alter body self-consciousness. Respir Physiol Neurobiol. Nov. 2014;203:68–74. https://doi.org/10.1016/j.resp.2014.08.003.

Allard E, et al. Interferences between breathing, experimental dyspnoea and bodily self-consciousness. Sci Rep. 2017;7(1):30. https://doi.org/10.1038/s41598-017-11045-y.

Article  CAS  Google Scholar 

Betka S, et al. Virtual reality intervention alleviates dyspnea in patients recovering from COVID pneumonia. ERJ Open Res. Sep. 2023;pp 00570–02022. https://doi.org/10.1183/23120541.00570-2022.

Betka S et al. Aug., Mechanisms of the breathing contribution to bodily self-consciousness in healthy humans: Lessons from machine-assisted breathing? Psychophysiology, vol. 57, no. 8, p. e13564, 2020, https://doi.org/10.1111/psyp.13564.

Armstrong DM. The supraspinal control of mammalian locomotion, J Physiol, vol. 405, pp. 1–37, Nov. 1988.

Grillner S, Wallén P. Central Pattern Generators for Locomotion, with special reference to vertebrates. Annu Rev Neurosci. Mar. 1985;8(1):233–61. https://doi.org/10.1146/annurev.ne.08.030185.001313.

Valentinuzzi ME. Syncopation and Its Perceptions, IEEE Pulse, vol. 11, no. 6, pp. 31–33, Nov. 2020, https://doi.org/10.1109/MPULS.2020.3036199.

Frigon A, Akay T, Prilutsky BI. Control of mammalian locomotion by Somatosensory Feedback. In: Prakash YS, editor. in Comprehensive Physiology. 1st ed. Wiley; 2021. pp. 2877–947. https://doi.org/10.1002/cphy.c210020.

Thomas DP, Whitney RJ. Postural movements during normal standing in man, J Anat, vol. 93, no. Pt 4, pp. 524–539, Oct. 1959.

Rognini G, Blanke O. Cognetics: robotic interfaces for the conscious mind. Trends Cogn Sci. Mar. 2016;20(3):162–4. https://doi.org/10.1016/j.tics.2015.12.002.

Shokur S et al. Sep., Assimilation of virtual legs and perception of floor texture by complete paraplegic patients receiving artificial tactile feedback, Sci Rep, vol. 6, no. 1, p. 32293, 2016, https://doi.org/10.1038/srep32293.

Sherrick CE, Rogers R. Apparent haptic movement, Perception & Psychophysics, vol. 1, no. 6, pp. 175–180, Jun. 1966, https://doi.org/10.3758/BF03215780.

Burtt HE. Tactual illusions of movement., Journal of Experimental Psychology, vol. 2, no. 5, pp. 371–385, Oct. 1917, https://doi.org/10.1037/h0074614.

Blanc Y, Balmer C, Landis T, Vingerhoets F. Temporal parameters and patterns of the foot roll over during walking: normative data for healthy adults, Gait Posture, vol. 10, pp. 97–108, Oct. 1999.

Leys C, Ley C, Klein O, Bernard P, Licata L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median, Journal of Experimental Social Psychology, vol. 49, no. 4, pp. 764–766, Jul. 2013, https://doi.org/10.1016/j.jesp.2013.03.013.

Team JASP. JASP. 2023. [Online]. Available: https://jasp-stats.org/.

Core Team R. R: a Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.

Google Scholar 

Burnham KP. Multimodel Inference: understanding AIC and BIC in Model Selection. Sociol Methods Res. 2004;33:44. https://doi.org/10.1177/0049124104268644.

Article  Google Scholar 

Martin CD, Thierry G, Démonet J-F. ERP characterization of sustained attention effects in Visual Lexical categorization. PLoS ONE. Mar. 2010;5(3):e9892. https://doi.org/10.1371/journal.pone.0009892.

Wichmann FA, Hill NJ. The psychometric function: I. Fitting, sampling, and goodness of fit, Percept Psychophys, vol. 63, pp. 1293–313, Nov. 2001.

Wichmann FA, Hill NJ. The psychometric function: II. Bootstrap-based confidence intervals and sampling, Percept Psychophys, vol. 63, pp. 1314–29, Nov. 2001.

Reisman DS, Wityk R, Silver K, Bastian AJ. Split-Belt Treadmill Adaptation Transfers to Overground Walking in Persons Poststroke, Neurorehabil Neural Repair, vol. 23, no. 7, pp. 735–744, Sep. 2009, https://doi.org/10.1177/1545968309332880.

Torres-Oviedo G, Bastian AJ. Seeing Is Believing: Effects of Visual Contextual Cues on Learning and Transfer of Locomotor Adaptation, J. Neurosci, vol. 30, no. 50, pp. 17015–17022, Dec. 2010, https://doi.org/10.1523/JNEUROSCI.4205-10.2010.

Krakauer JW, Mazzoni P, Ghazizadeh A, Ravindran R, Shadmehr R. Generalization of Motor Learning depends on the history of prior action. PLoS Biol. Sep. 2006;4(10):e316. https://doi.org/10.1371/journal.pbio.0040316.

Kannape OA, Blanke O. Agency, gait and self-consciousness. Int J Psychophysiol. Jan. 2012. https://doi.org/10.1016/j.ijpsycho.2011.12.006.

Ernst MO, Banks MS. Humans integrate visual and haptic information in a statistically optimal fashion, Nature, vol. 415, no. 6870, pp. 429–433, Jan. 2002, https://doi.org/10.1038/415429a.

Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture. Aug. 2002;16(1):1–14. https://doi.org/10.1016/S0966-6362(01)00156-4.

Yogev-Seligmann G, Hausdorff JM, Giladi N. The role of executive function and attention in gait: EF and Gait, Mov. Disord, vol. 23, no. 3, pp. 329–342, Feb. 2008, https://doi.org/10.1002/mds.21720.

Hoang I, Ranchet M, Derollepot R, Moreau F, Paire-Ficout L. Measuring the Cognitive Workload During Dual-Task Walking in Young Adults: A Combination of Neurophysiological and Subjective Measures, Front. Hum. Neurosci, vol. 14, p. 592532, Nov. 2020, https://doi.org/10.3389/fnhum.2020.592532.

Hausdorff JM, Lowenthal J, Herman T, Gruendlinger L, Peretz C, Giladi N. Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease: Effects of RAS on gait variability in PD, European Journal of Neuroscience, vol. 26, no. 8, pp. 2369–2375, Oct. 2007, https://doi.org/10.1111/j.1460-9568.2007.05810.x.

Fourneret P, Jeannerod M. Limited conscious monitoring of motor performance in normal subjects, Neuropsychologia, vol. 36, pp. 1133–40, Nov. 1998.

Mayville JM, Jantzen KJ, Fuchs A, Steinberg FL, Kelso JAS. Cortical and subcortical networks underlying syncopated and synchronized coordination revealed using fMRI, Hum. Brain Mapp, vol. 17, no. 4, pp. 214–229, Dec. 2002, https://doi.org/10.1002/hbm.10065.

Jantzen KJ, Steinberg FL, Kelso JAS. Coordination Dynamics of Large-scale Neural Circuitry Underlying Rhythmic Sensorimotor Behavior, Journal of Cognitive Neuroscience, vol. 21, no. 12, pp. 2420–2433, Dec. 2009, https://doi.org/10.1162/jocn.2008.21182.

Engels LF, Shehata AW, Scheme EJ, Sensinger JW, Cipriani C. When less is more – Discrete Tactile Feedback dominates continuous Audio Biofeedback in the Integrated Percept while Controlling a Myoelectric Prosthetic Hand. Front Neurosci. Jun. 2019;13:578. https://doi.org/10.3389/fnins.2019.00578.

George JA, et al. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci Robot. Jul. 2019;4:eaax2352. https://doi.org/10.1126/scirobotics.aax2352.

Priplata AA, Niemi JB, Harry JD, Lipsitz LA, Collins JJ. Vibrating insoles and balance control in elderly people. Lancet. Oct. 2003;362(9390):1123–4. https://doi.org/10.1016/S0140-6736(03)14470-4.

Ghai S, Ghai I, Schmitz G, Effenberg AO. Effect of rhythmic auditory cueing on parkinsonian gait: a systematic review and meta-analysis. Sci Rep. Dec. 2018;8(1):506. https://doi.org/10.1038/s41598-017-16232-5.

Spaulding SJ, Barber B, Colby M, Cormack B, Mick T, Jenkins ME. Cueing and Gait Improvement Among People With Parkinson’s Disease: A Meta-Analysis, Archives of Physical Medicine and Rehabilitation, vol. 94, no. 3, pp. 562–570, Mar. 2013, https://doi.org/10.1016/j.apmr.2012.10.026.

Ginis P, Nackaerts E, Nieuwboer A, Heremans E. Cueing for people with Parkinson’s disease with freezing of gait: A narrative review of the state-of-the-art and novel perspectives, Annals of Physical and Rehabilitation Medicine, vol. 61, no. 6, pp. 407–413, Nov. 2018, https://doi.org/10.1016/j.rehab.2017.08.002.

Martini E, et al. Increased symmetry of Lower-Limb amputees walking with concurrent bilateral Vibrotactile Feedback. IEEE Trans Neural Syst Rehabil Eng. 2021;29:74–84. https://doi.org/10.1109/TNSRE.2020.3034521.

Article  PubMed  Google Scholar 

Halperin O, Karni R, Israeli-Korn S, Hassin‐Baer S, Zaidel A. Overconfidence in visual perception in parkinson’s disease, Eur J Neurosci, vol. 53, no. 6, pp. 2027–2039, Mar. 2021, https://doi.org/10.1111/ejn.15093.

Moore JW, Schneider SA, Schwingenschuh P, Moretto G, Bhatia KP, Haggard P. Dopaminergic medication boosts action-effect binding in Parkinson’s disease, Neuropsychologia, vol. 48, pp. 1125–32, Mar. 2010, https://doi.org/10.1016/j.neuropsychologia.2009.12.014.

Ricciardi L, et al. Acting without being in control: exploring volition in Parkinson’s disease with impulsive compulsive behaviours. Parkinsonism Relat Disord. Jul. 2017;40:51–7. https://doi.org/10.1016/j.parkreldis.2017.04.011.

Bach-y-Rita P, Kercel SW. Sensory substitution and the human–machine interface. Trends Cogn Sci. Dec. 2003;7(12):541–6. https://doi.org/10.1016/j.tics.2003.10.013.

留言 (0)

沒有登入
gif