Restoration of the soil fertility under Cr(VI) and artificial drought condition by the utilization of plant growth–promoting Bacillus spp. SSAU2

Abdel Latef AAH, Omer AM, Badawy AA, Osman MS, Ragaey MM (2021) Strategy of salt tolerance and interactive impact of Azotobacter chroococcum and/or Alcaligenes faecalis inoculation on canola (Brassica napus L.) plants grown in saline soil. Plants 10(1):110

Article  PubMed  PubMed Central  Google Scholar 

Ali B, Sabri AN, Ljung K, Hasnain S (2009) Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.). World J Microbiol Biotechnol 25:519–526

Article  CAS  Google Scholar 

Amil-Ruiz F, Garrido-Gala J, Gadea J, Blanco-Portales R, Muñoz-Mérida A, Trelles O, Caballero JL (2016) Partial activation of SA-and JA-defensive pathways in strawberry upon Colletotrichum acutatum interaction. Frontiers in Plant Science, 7, 1036. Sec. Plant Pathogen Interactions Volume 7 - 2016. https://doi.org/10.3389/fpls.2016.01036

Ashry NM, Alaidaroos BA, Mohamed SA, Badr OA, El-Saadony MT, Esmael A (2022) Utilization of drought-tolerant bacterial strains isolated from harsh soils as a plant growth-promoting rhizobacteria (PGPR). Saudi J Biol Sci 29(3):1760–1769

Article  CAS  PubMed  Google Scholar 

Bessai SA, Bensidhoum L, Nabti EH (2022) Optimization of IAA production by telluric bacteria isolated from northern Algeria. Biocatal Agric Biotechnol 41:102319

Article  Google Scholar 

Blenis N, Hue N, Maaz TM, Kantar M (2023) Biochar production, modification, and its uses in soil remediation: a review. Sustainability 15(4):3442

Article  CAS  Google Scholar 

Cao M, Narayanan M, Shi X, Chen X, Li Z, Ma Y (2023) Optimistic contributions of plant growth-promoting bacteria for sustainable agriculture and climate stress alleviation. Environ Res 217:114924

Article  CAS  PubMed  Google Scholar 

Desoky ESM, Saad AM, El-Saadony MT, Merwad ARM, Rady MM (2020) Plant growth-promoting rhizobacteria: potential improvement in antioxidant defense system and suppression of oxidative stress for alleviating salinity stress in Triticum aestivum (L) plants. Biocatalysis Agric Biotechnol 30:101878

Article  Google Scholar 

Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26(1):192

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hafez M, Abo El-Ezz SF, Popov AI, Rashad M (2021) Organic amendments combined with plant growth-promoting rhizobacteria (Azospirillum brasilense) as an eco-friendly by-product to remediate and enhance the fertility of saline sodic-soils in Egypt. Commun Soil Sci Plant Anal 52(12):1416–1433

Article  CAS  Google Scholar 

Holbrook AA, Edge WJW, Bailey F (1961) Spectrophotometric method for determination of gibberellic acid. https://doi.org/10.1021/ba-1961-0028.ch018

Kholssi R, Marks EA, Miñón J, Maté AP, Sacristán G, Montero O, Debdoubi A, Rad C (2021) A consortium of cyanobacteria and plant growth promoting rhizobacteria for wheat growth improvement in a hydroponic system. South Afr J Botany 142:247–258

Article  CAS  Google Scholar 

Köberl M, Schmidt R, Ramadan EM, Bauer R, Berg G (2013) The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Front Microbiol 4:400

Article  PubMed  PubMed Central  Google Scholar 

Kumar P, Sudesh Kumar A, Suneja P (2023) Studies on the physicochemical parameter’s optimization for indole-3-acetic acid production by Pantoea agglomerans CPHN2 using one factor at a time (OFAT) and response surface methodology (RSM). Environ Sustain 6(1):35–44

Article  CAS  Google Scholar 

Lebrazi S, Niehaus K, Bednarz H, Fadil M, Chraibi M, Fikri-Benbrahim K (2020) Screening and optimization of indole-3-acetic acid production and phosphate solubilization by rhizobacterial strains isolated from Acacia cyanophylla root nodules and their effects on its plant growth. J Genetic Eng Biotechnol 18:1–12. https://doi.org/10.1186/s43141-020-00090-2

Article  Google Scholar 

Lim JH, Kim SD (2009) Synergistic plant growth promotion by the indigenous auxins-producing PGPR Bacillus subtilis AH18 and Bacillus licheniforims K11. J Korean Soc Appl Biol Chem 52:531–538

Article  CAS  Google Scholar 

Lin Y, Watts DB, Kloepper JW, Feng Y, Torbert HA (2020) Influence of plant growth-promoting rhizobacteria on corn growth under drought stress. Commun Soil Sci Plant Anal 51(2):250–264

Article  CAS  Google Scholar 

Liu Y, Chen L, Zhang N, Li Z, Zhang G, Xu Y, Shen Q, Zhang R (2016) Plant-microbe communication enhances auxin biosynthesis by a root-associated bacterium, Bacillus amyloliquefaciens SQR9. Mol Plant-Microbe Interact 29(4):324–330

Article  CAS  PubMed  Google Scholar 

Mukherjee B, Roy S, Dhara A, Dutta S (2021) Screening and optimization of indole-3-acetic acid production by bacterial strain isolated from rice rhizosphere and its effects on plant growth. Environ Exp Biol 19(3):141–149. https://doi.org/10.22364/eeb.19.14

Article  Google Scholar 

Omer AM, Osman MS, Badawy AA (2022) Inoculation with Azospirillum brasilense and/or Pseudomonas geniculata reinforces flax (Linum usitatissimum) growth by improving physiological activities under saline soil conditions. Bot Stud 63(1):15

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oves M, Khan MS, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83

Article  CAS  Google Scholar 

Panigrahi S, Mohanty S, Rath CC (2020) Characterization of endophytic bacteria Enterobacter cloacae MG00145 isolated from Ocimum sanctum with indole acetic acid (IAA) production and plant growth promoting capabilities against selected crops. S Afr J Bot 134:17–26

Article  CAS  Google Scholar 

Parvin W, Rahman MM, Govender NT, Wong MY (2020) Identification, determination and quantification of indole-3-acetic acid produced by Pseudomonas aeruginosa UPMP3 and its effect on the growth of oil palm (Elaeis guineensis Jacq). World J Agric Res 8(3):75–83. https://doi.org/10.12691/wjar-8-3-2

Article  Google Scholar 

Qadir M, Hussain A, Hamayun M, Shah M, Iqbal A, Murad W (2020) Phytohormones producing rhizobacterium alleviates chromium toxicity in Helianthus annuus L. by reducing chromate uptake and strengthening antioxidant system. Chemosphere 258:127386

Article  CAS  PubMed  Google Scholar 

Rashid U, Yasmin H, Hassan MN, Naz R, Nosheen A, Sajjad M, Ahmad P (2021) Drought-tolerant Bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions. Plant Cell Rep 1–21. https://doi.org/10.1007/s00299-020-02640-x

Raut V, Shaikh I, Naphade B, Prashar K, Adhapure N (2017) Plant growth promotion using microbial IAA producers in conjunction with azolla: a novel approach. Chem Biol Technol Agric 4:1–11

Article  Google Scholar 

Sato JH, Figueiredo CCD, Marchão RL, Madari BE, Benedito LEC, Busato JG, Souza DMD (2014) Methods of soil organic carbon determination in Brazilian savannah soils. Scientia Agricola 71:302–308

Article  Google Scholar 

Sharma A, Maurya N, Singh SK, Sundaram S (2024a) Investigation on synergetic strategy for the rejuvenation of Cr(VI) contaminated soil using biochar-immobilized bacteria and cyanobacteria consortia. J Environ Chem Eng 112034. https://doi.org/10.1016/j.jece.2024.112034

Sharma A, Singh SK, Sundaram S (2024b) Efficient biosequestration of Cr (VI) by Bacillus spp. SSAU-2: optimization, mathematical modelling, and plant growth promotion. Biochem Eng J 204:109186. https://doi.org/10.1016/j.bej.2023.109186

Sharma A, Singh SK, Nath A, Sundaram S (2024c) Methyl red biodegradation by novel halophilic Lactiplantibacillus plantarum SS-AU1 isolated from river Ganges. International Journal of Environmental Science and Technology pp 1–16. https://doi.org/10.1007/s13762-024-05468-0

Shi J, Vakoc CR (2014) The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell 54(5):728–736

Article  CAS  PubMed  Google Scholar 

Srinivas Ravi M, Karthik C, Padikasan IA, Ma Y (2022) Alleviation of Cr(VI) toxicity and improve phytostabilization potential of Vigna radiata using a novel Cr(VI) reducing multi-stress-tolerant plant growth promoting rhizobacterial strain Bacillus flexus M2. Agronomy 12(12):3079

Article  CAS  Google Scholar 

Suliasih S, Susilowati DN, Muramatsu Y, Sudiana IM (2020) Characterization of rhizobacteria isolates from soil and nodules. BIOTROPIA-The Southeast Asian J Tropical Biol 27(3):292–303

Google Scholar 

Sumera FC, Cajipe GJ (1981) Extraction and partial characterization of auxin-like substances from Sargassum polycystum C. Ag. https://doi.org/10.1515/botm.1981.24.3.157

Tahir HA, Gu Q, Wu H, Raza W, Hanif A, Wu L, ... Gao X (2017) Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Frontier Microbiol, 8:171

Tirry N, Kouchou A, El Omari B, Ferioun M, El Ghachtouli N (2021) Improved chromium tolerance of Medicago sativa by plant growth-promoting rhizobacteria (PGPR). J Genetic Eng Biotechnol 19:1–14. https://doi.org/10.1186/s43141-021-00254-8

Article  Google Scholar 

Wagi S, Ahmed A (2019) Bacillus spp.: potent microfactories of bacterial IAA. PeerJ 7:e7258

Article  PubMed  PubMed Central  Google Scholar 

Wang MC, Gong M, Zang HB, Hua XM, Yao J, Pang YJ, Yang YH (2006) Effect of methamidophos and urea application on microbial communities in soils as determined by microbial biomass and community level physiological profiles. J Environ Sci Health B 41(4):399–413

Article  CAS  PubMed  Google Scholar 

Wang S, Na X, Yang L, Liang C, He L, Jin J, Wang X, Bi Y (2021) Bacillus megaterium strain WW1211 promotes plant growth and lateral root initiation via regulation of auxin biosynthesis and redistribution. Plant and Soil 466:491–504

Article  CAS  Google Scholar 

Zamanzadeh-Nasrabadi SM, Mohammadiapanah F, Hosseini-Mazinani M, Sarikhan S (2023) Salinity stress endurance of the plants with the aid of bacterial genes. Front Genet 14:1049608

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng LP, Li XP, Zhou LL, Wang JW (2021) Endophytes in artemisia annua L.: new potential regulators for plant growth and artemisinin biosynthesis. Plant Growth Regul 1–21. https://doi.org/10.1007/s10725-021-00751-3

留言 (0)

沒有登入
gif