Severe Tick-Borne Encephalitis (TBE) in a Patient with X-Linked Agammaglobulinemia; Treatment with TBE Virus IgG Positive Plasma, Clinical Outcome and T Cell Responses

Vetrie D, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases (in eng). Nature. 1993;361(6409):226–33. https://doi.org/10.1038/361226a0.

Article  CAS  PubMed  Google Scholar 

Schaafsma GC, Väliaho J, Wang Q, Berglöf A, Zain R, Smith CI, Vihinen M. BTKbase, Bruton Tyrosine Kinase Variant Database in X-Linked Agammaglobulinemia: Looking Back and Ahead. Human Mutation. 2023;1–12:2023. https://doi.org/10.1155/2023/5797541.

Article  CAS  Google Scholar 

Vihinen M, Mattsson PT, Smith CI. Bruton tyrosine kinase (BTK) in X-linked agammaglobulinemia (XLA) (in eng). Front Biosci. 2000;5:D917–28. https://doi.org/10.2741/vihinen.

Article  CAS  PubMed  Google Scholar 

Chawla S, Jindal AK, Arora K, Tyagi R, Dhaliwal M, Rawat A. T Cell Abnormalities in X-Linked Agammaglobulinaemia: an Updated Review, (in eng). Clinic Rev Allerg Immunol. 2023;65(1):31–42. https://doi.org/10.1007/s12016-022-08949-7.

Article  CAS  Google Scholar 

Frange P, et al. Prevalence and clinical impact of norovirus fecal shedding in children with inherited immune deficiencies (in eng). J Infect Dis. 2012;206(8):1269–74. https://doi.org/10.1093/infdis/jis498.

Article  PubMed  Google Scholar 

Teramoto T, et al. Progressive multifocal leukoencephalopathy in a patient with X-linked agammaglobulinemia (in eng). Scand J Infect Dis. 2003;35(11–12):909–10. https://doi.org/10.1080/00365540310016673.

Article  PubMed  Google Scholar 

Banday AZ, Jindal AK, Arora K, Rawat A. Extensive Molluscum Contagiosum in X-Linked Agammaglobulinemia (in eng). J Allergy Clin Immunol Pract. 2021;9(2):985. https://doi.org/10.1016/j.jaip.2020.07.037.

Article  CAS  PubMed  Google Scholar 

Morales-Aza B, et al. Impaired maintenance of naturally acquired T-cell memory to the meningococcus in patients with B-cell immunodeficiency (in eng). Blood. 2009;113(18):4206–12. https://doi.org/10.1182/blood-2008-08-171587.

Article  CAS  PubMed  Google Scholar 

Ramesh M, Simchoni N, Hamm D, Cunningham-Rundles C. High-throughput sequencing reveals an altered T cell repertoire in X-linked agammaglobulinemia (in eng). Clin Immunol. 2015;161(2):190–6. https://doi.org/10.1016/j.clim.2015.09.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharapova SO, Pashchenko OE, Guryanova IE, Migas AA, Kondratenko IV, Aleinikova OV. Recent thymic emigrants, T regulatory cells, and BAFF level in children with X-linked agammaglobulinaemia in association with chronic respiratory disease (in eng). Allergologia et Immunopathologia. 2018;46(1):58–66. https://doi.org/10.1016/j.aller.2017.01.011.

Article  CAS  PubMed  Google Scholar 

Shelyakin PV, et al. Naïve Regulatory T Cell Subset Is Altered in X-Linked Agammaglobulinemia (in eng). Front Immunol. 2021;12: 697307. https://doi.org/10.3389/fimmu.2021.697307.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao Y, et al. Immunodeficiency syndromes differentially impact the functional profile of SARS-CoV-2-specific T cells elicited by mRNA vaccination (in eng). Immunity. 2022;55(9):1732-1746.e5. https://doi.org/10.1016/j.immuni.2022.07.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chrdle A, Chmelík V, Růžek D. Tick-borne encephalitis: What travelers should know when visiting an endemic country (in eng). Hum Vaccin Immunother. 2016;12(10):2694–9. https://doi.org/10.1080/21645515.2016.1218098.

Article  PubMed  PubMed Central  Google Scholar 

European Centre for Disease Prevention and Control. An agency of the European Union. Title: Factsheet about tick-borne encephalitis (TBE). https://www.ecdc.europa.eu/en/tick-borne-encephalitis/facts/factsheet. Accessed 22 Jan 2024.

De Graaf JA, Reimerink JH, Voorn GP, bij de Vaate EA, De Vries A, Rockx B, Schuitemaker A, Hira V. First human case of tick-borne encephalitis virus infection acquired in the Netherlands, July 2016. Euro Surveill. 2016;21(33):30318. https://doi.org/10.2807/1560-7917.ES.2016.21.33.30318.

Gils S, Frans J, Ho E, Smismans A, Vermylen P, Dewil M, Dejaegher L, Leo Heyndrickx L, Ariën KK, Van Esbroeck M. Case report: tick-borne encephalitis (TBE) in a Belgian traveller returning from Germany (in eng). J Travel Med. 2018;25(1). https://doi.org/10.1093/jtm/tay078.

Slunge D, Boman A, Studahl M. Burden of Tick-Borne Encephalitis, Sweden (in eng). Emerg Infect Dis. 2022;28(2):314–22. https://doi.org/10.3201/eid2802.204324.

Article  PubMed  PubMed Central  Google Scholar 

Askling HH, Insulander M, Hergens MP, Leval A. Tick borne encephalitis (TBE)-vaccination coverage and analysis of variables associated with vaccination, Sweden (in eng). Vaccine. 2015;33(38):4962–8. https://doi.org/10.1016/j.vaccine.2015.07.030.

Article  PubMed  Google Scholar 

The Public Health Agency of Sweden. Tick Borne Encephalitis (TBE) – sjukdomsstatistik. https://www.folkhalsomyndigheten.se/smittskydd-beredskap/smittsamma-sjukdomar/tick-borne-encephalitis-tbe/Updated240408.

Kaiser R. Tick-borne encephalitis (in eng). Infect Dis Clin North Am. 2008;22(3):561–75. https://doi.org/10.1016/j.idc.2008.03.013.

Article  PubMed  Google Scholar 

Lademann M, Wild B, Reisinger EC. Tick-borne encephalitis (FSME)--how great is the danger really? MMW Fortschr Med. 2003;145(15):45, 47–9.

Mickiene A, Laiskonis A, Günther G, Vene S, Lundkvist A, Lindquist L. Tickborne encephalitis in an area of high endemicity in lithuania: disease severity and long-term prognosis (in eng). Clin Infect Dis. 2002;35(6):650–8. https://doi.org/10.1086/342059.

Article  PubMed  Google Scholar 

Bogovič P, et al. The long-term outcome of tick-borne encephalitis in Central Europe (in eng). Ticks Tick Borne Dis. 2018;9(2):369–78. https://doi.org/10.1016/j.ttbdis.2017.12.001.

Article  PubMed  Google Scholar 

Wolf HM, Thon V, Litzman J, Eibl MM. Detection of impaired IgG antibody formation facilitates the decision on early immunoglobulin replacement in hypogammaglobulinemic patients (in eng). Front Immunol. 2015;6:32. https://doi.org/10.3389/fimmu.2015.00032.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McAuley AJ, et al. Cross-neutralisation of viruses of the tick-borne encephalitis complex following tick-borne encephalitis vaccination and/or infection (in eng). NPJ Vaccines. 2017;2:5. https://doi.org/10.1038/s41541-017-0009-5.

Article  PubMed  PubMed Central  Google Scholar 

Vene S, Haglund M, Vapalahti O, Lundkvist A. A rapid fluorescent focus inhibition test for detection of neutralizing antibodies to tick-borne encephalitis virus (in eng). J Virol Methods. 1998;73(1):71–5. https://doi.org/10.1016/s0166-0934(98)00041-x.

Article  CAS  PubMed  Google Scholar 

Bergman P, et al. Safety and efficacy of the mRNA BNT162b2 vaccine against SARS-CoV-2 in five groups of immunocompromised patients and healthy controls in a prospective open-label clinical trial (in eng). EBioMedicine. 2021;74:103705. https://doi.org/10.1016/j.ebiom.2021.103705.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin H, et al. Identification of Btk mutations in 20 unrelated patients with X-linked agammaglobulinaemia (XLA) (in eng). Hum Mol Genet. 1995;4(4):693–700. https://doi.org/10.1093/hmg/4.4.693.

Article  CAS  PubMed  Google Scholar 

Bestas B, et al. Splice-correcting oligonucleotides restore BTK function in X-linked agammaglobulinemia model (in eng). J Clin Invest. 2014;124(9):4067–81. https://doi.org/10.1172/jci76175.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vihinen M. The BTK gene homepage. Copyright © Protein Structure and Bioinformatics, Lund University; 2016. https://databases.lovd.nl/shared/genes/BTK. Updated 2024. 

Jones TPW, Buckland M, Breuer J, Lowe DM. Viral infection in primary antibody deficiency syndromes (in eng). Rev Med Virol. 2019;29(4):e2049. https://doi.org/10.1002/rmv.2049.

Article  CAS  PubMed  Google Scholar 

Grygorczuk S, Dunaj-Małyszko J, Czupryna P, Sulik A, Toczyłowski K, Siemieniako-Werszko A, Żebrowska A, Pancewicz S, Moniuszko-Malinowska A. The detectability of the viral RNA in blood and cerebrospinal fluid of patients with tick-borne encephalitis. Int J Mol Sci. 2022;23(16):9332. https://doi.org/10.3390/ijms23169332.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caracciolo I, et al. Persistent viremia and urine shedding of tick-borne encephalitis virus in an infected immunosuppressed patient from a new epidemic cluster in North-Eastern Italy (in eng). J Clin Virol. 2015;69:48–51. https://doi.org/10.1016/j.jcv.2015.05.019.

Article  PubMed  Google Scholar 

Chmelík V, Chrdle A, Růžek D. Fatal tick-borne encephalitis in an immunosuppressed 12-year-old patient (in eng). J Clin Virol. 2016;74:73–4. https://doi.org/10.1016/j.jcv.2015.11.029.

Article  PubMed  Google Scholar 

Kollaritsch HKV, Holzmann H, Karganova G, Alan Barrett A, Jochen Süss J, Yuri Pervikov Y, Bjorvatn B. Duclos P, Hombach J. Vaccines against tick-borne encephalitis: World Health Organization. Weekly Epidemiological Record. 2011;86(24).

Paulke-Korinek M, Rendi-Wagner P, Kundi M, Laaber B, Wiedermann U, Kollaritsch H. Booster vaccinations against tick-borne encephalitis: 6 years follow-up indicates long-term protection (in eng). Vaccine. 2009;27(50):7027–30. https://doi.org/10.1016/j.vaccine.2009.09.068.

Article  CAS  PubMed  Google Scholar 

Elsterova J, Palus M, Sirmarova J, Kopecky J, Niller HH, Ruzek D. Tick-borne encephalitis virus neutralization by high dose intravenous immunoglobulin (in eng). Ticks Tick Borne Dis. 2017;8(2):253–8. https://doi.org/10.1016/j.ttbdis.2016.11.007.

Article  PubMed  Google Scholar 

Rabel PO, Planitzer CB, Farcet MR, Kreil TR. Tick-borne encephalitis virus-neutralizing antibodies in different immunoglobulin preparations (in eng). Clin Vaccine Immunol. 2012;19(4):623–5. https://doi.org/10.1128/cvi.05705-11.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif