Targeting immune cell recruitment in atherosclerosis

Bjorkegren, J. L. M. & Lusis, A. J. Atherosclerosis: recent developments. Cell 185, 1630–1645 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

van der Vorst, E. P. C. et al. G-protein coupled receptor targeting on myeloid cells in atherosclerosis. Front. Pharmacol. 10, 531 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Yan, Y., Thakur, M., van der Vorst, E. P. C., Weber, C. & Doring, Y. Targeting the chemokine network in atherosclerosis. Atherosclerosis 330, 95–106 (2021).

Article  CAS  PubMed  Google Scholar 

Weber, C. & Noels, H. Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 17, 1410–1422 (2011).

Article  CAS  PubMed  Google Scholar 

Soehnlein, O. & Libby, P. Targeting inflammation in atherosclerosis — from experimental insights to the clinic. Nat. Rev. Drug Discov. 20, 589–610 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gencer, S., Evans, B. R., van der Vorst, E. P. C., Doring, Y. & Weber, C. Inflammatory chemokines in atherosclerosis. Cells 10, 226 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lutgens, E. et al. Immunotherapy for cardiovascular disease. Eur. Heart J. 40, 3937–3946 (2019).

Article  CAS  PubMed  Google Scholar 

Hughes, C. E. & Nibbs, R. J. B. A guide to chemokines and their receptors. FEBS J. 285, 2944–2971 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noels, H., Weber, C. & Koenen, R. R. Chemokines as therapeutic targets in cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 39, 583–592 (2019).

Article  CAS  PubMed  Google Scholar 

Blanchet, X., Weber, C. & von Hundelshausen, P. Chemokine heteromers and their impact on cellular function-a conceptual framework. Int. J. Mol. Sci. 24, 10925 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gencer, S. et al. Atypical chemokine receptors in cardiovascular disease. Thromb. Haemost. 119, 534–541 (2019).

Article  PubMed  Google Scholar 

Doran, A. C. Inflammation resolution: implications for atherosclerosis. Circ. Res. 130, 130–148 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Back, M., Yurdagul, A. Jr., Tabas, I., Oorni, K. & Kovanen, P. T. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat. Rev. Cardiol. 16, 389–406 (2019).

PubMed  PubMed Central  Google Scholar 

Basil, M. C. & Levy, B. D. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat. Rev. Immunol. 16, 51–67 (2016).

Article  CAS  PubMed  Google Scholar 

Serhan, C. N. & Levy, B. D. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J. Clin. Invest. 128, 2657–2669 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Norling, L. V., Dalli, J., Flower, R. J., Serhan, C. N. & Perretti, M. Resolvin D1 limits polymorphonuclear leukocyte recruitment to inflammatory loci: receptor-dependent actions. Arterioscler. Thromb. Vasc. Biol. 32, 1970–1978 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sansbury, B. E. & Spite, M. Resolution of acute inflammation and the role of resolvins in immunity, thrombosis, and vascular biology. Circ. Res. 119, 113–130 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maganto-Garcia, E. et al. Foxp3+-inducible regulatory T cells suppress endothelial activation and leukocyte recruitment. J. Immunol. 187, 3521–3529 (2011).

Article  CAS  PubMed  Google Scholar 

Akkaya, B. et al. Regulatory T cells mediate specific suppression by depleting peptide-MHC class II from dendritic cells. Nat. Immunol. 20, 218–231 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subramanian, M., Thorp, E., Hansson, G. K. & Tabas, I. Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. J. Clin. Invest. 123, 179–188 (2013).

Article  CAS  PubMed  Google Scholar 

Ring, S., Schafer, S. C., Mahnke, K., Lehr, H. A. & Enk, A. H. CD4+ CD25+ regulatory T cells suppress contact hypersensitivity reactions by blocking influx of effector T cells into inflamed tissue. Eur. J. Immunol. 36, 2981–2992 (2006).

Article  CAS  PubMed  Google Scholar 

Pinderski Oslund, L. J. et al. Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 19, 2847–2853 (1999).

Article  CAS  PubMed  Google Scholar 

Raffin, C., Vo, L. T. & Bluestone, J. A. Treg cell-based therapies: challenges and perspectives. Nat. Rev. Immunol. 20, 158–172 (2020).

Article  CAS  PubMed  Google Scholar 

Saraiva, M., Vieira, P. & O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 217, e20190418 (2020).

Article  PubMed  Google Scholar 

Zhang, H. et al. Role of the CCL2-CCR2 axis in cardiovascular disease: pathogenesis and clinical implications. Front. Immunol. 13, 975367 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bot, I. et al. A novel CCR2 antagonist inhibits atherogenesis in apoE deficient mice by achieving high receptor occupancy. Sci. Rep. 7, 52 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Zivkovic, L., Asare, Y., Bernhagen, J., Dichgans, M. & Georgakis, M. K. Pharmacological targeting of the CCL2/CCR2 axis for atheroprotection: a meta-analysis of preclinical studies. Arterioscler. Thromb. Vasc. Biol. 42, e131–e144 (2022).

Article  CAS  PubMed  Google Scholar 

Georgakis, M. K. et al. Carriers of rare damaging CCR2 genetic variants are at lower risk of atherosclerotic disease. Preprint at medRxiv https://doi.org/10.1101/2023.08.14.23294063 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Gilbert, J. et al. Effect of CC chemokine receptor 2 CCR2 blockade on serum C-reactive protein in individuals at atherosclerotic risk and with a single nucleotide polymorphism of the monocyte chemoattractant protein-1 promoter region. Am. J. Cardiol. 107, 906–911 (2011).

Article  CAS  PubMed  Google Scholar 

Lim, S. Y., Yuzhalin, A. E., Gordon-Weeks, A. N. & Muschel, R. J. Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget 7, 28697–28710 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Obmolova, G. et al. Structural basis for high selectivity of anti-CCL2 neutralizing antibody CNTO 888. Mol. Immunol. 51, 227–233 (2012).

Article  CAS  PubMed  Google Scholar 

Kirk, P. S. et al. Inhibition of CCL2 signaling in combination with docetaxel treatment has profound inhibitory effects on prostate cancer growth in bone. Int. J. Mol. Sci. 14, 10483–10496 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Loberg, R. D. et al. Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res. 67, 9417–9424 (2007).

Article  CAS  PubMed  Google Scholar 

Pienta, K. J. et al. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest. New Drugs 31, 760–768 (2013).

Article  CAS  PubMed  Google Scholar 

Pekayvaz, K. et al. Mural cell-derived chemokines provide a protective niche to safeguard vascular macrophages and limit chronic inflammation. Immunity 56, 2325–2341.e15 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cipriani, S. et al. Efficacy of the CCR5 antagonist maraviroc in reducing early, ritonavir-induced atherogenesis and advanced plaque progression in mice. Circulation 127, 2114–2124 (2013).

Article  CAS  PubMed  Google Scholar 

Francisci, D. et al. Maraviroc intensification modulates atherosclerotic progression in HIV-suppressed patients at high cardiova

留言 (0)

沒有登入
gif