Enhanced Spatial Fuzzy C-Means Algorithm for Brain Tissue Segmentation in T1 Images

Adhikari, S. K., Sing, J. K., Basu, D. K., & Nasipuri, M. (2015). Conditional spatial fuzzy c-means clustering algorithm for segmentation of mri images. Applied soft computing, 34, 758–769.

Article  Google Scholar 

Al-Dmour, H., & Al-Ani, A. (2018). A clustering fusion technique for mr brain tissue segmentation. Neurocomputing, 275, 546–559.

Article  Google Scholar 

Avants, B. B., Tustison, N. J., Wu, J., Cook, P. A., & Gee, J. C. (2011). An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics, 9, 381–400.

Article  PubMed  PubMed Central  Google Scholar 

Brebisson, A., & Montana, G. (2015). Deep neural networks for anatomical brain segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28.

Chahal, P. K., & Pandey, S. (2023). A hybrid weighted fuzzy approach for brain tumor segmentation using mr images. Neural Computing and Applications, 35(33), 23877–23891.

Article  Google Scholar 

Chuang, K. -S., Tzeng, H. -L., Chen, S., Wu, J., & Chen, T. -J. (2006). Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics, 30(1), 9–15.

Cocosco, C. A. (1997). Brainweb: Online interface to a 3d mri simulated brain database. (No Title).

Collins, D. L., Zijdenbos, A. P., Kollokian, V., Sled, J. G., Kabani, N. J., Holmes, C. J., & Evans, A. C. (1998). Design and construction of a realistic digital brain phantom. IEEE transactions on medical imaging, 17(3), 463–468.

Article  CAS  PubMed  Google Scholar 

Díaz-Pernas, F.J., Martínez-Zarzuela, M., Antón-Rodríguez, M., & González-Ortega, D. (2021). A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network. In: Healthcare, vol. 9, p. 153. MDPI.

Ding, Y., Acosta, R., Enguix, V., Suffren, S., Ortmann, J., Luck, D., Dolz, J., & Lodygensky, G. A. (2020). Using deep convolutional neural networks for neonatal brain image segmentation. Frontiers in neuroscience, 14, 207.

Article  PubMed  PubMed Central  Google Scholar 

Dora, L., Agrawal, S., Panda, R., & Abraham, A. (2017). State-of-the-art methods for brain tissue segmentation: A review. IEEE reviews in biomedical engineering, 10, 235–249.

Article  PubMed  Google Scholar 

Gao, H., Xu, W., Sun, J., & Tang, Y. (2009). Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm. IEEE transactions on instrumentation and measurement, 59(4), 934–946.

Article  Google Scholar 

Greenspan, H., Ruf, A., & Goldberger, J. (2006). Constrained gaussian mixture model framework for automatic segmentation of mr brain images. IEEE transactions on medical imaging, 25(9), 1233–1245.

Article  PubMed  Google Scholar 

Hoopes, A., Mora, J. S., Dalca, A. V., Fischl, B., & Hoffmann, M. (2022). Synthstrip: skull-stripping for any brain image. NeuroImage, 260, 119474. https://doi.org/10.1016/j.neuroimage.2022.119474

Article  PubMed  Google Scholar 

Hua, L., Gu, Y., Gu, X., Xue, J., & Ni, T. (2021). A novel brain mri image segmentation method using an improved multi-view fuzzy c-means clustering algorithm. Frontiers in Neuroscience, 15, 662674.

Article  PubMed  PubMed Central  Google Scholar 

Jafrasteh, B., López, S. P. L., & Fernández, I. B. (2023). Melage: A purely python based neuroimaging software (neonatal). arXiv preprint arXiv:2309.07175

Ji, Z.-X., Sun, Q.-S., & Xia, D.-S. (2011). A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain mr image. Computerized Medical Imaging and Graphics, 35(5), 383–397.

Article  PubMed  Google Scholar 

Kalavathi, P. (2013). Brain tissue segmentation in mr brain images using multiple otsu’s thresholding technique. In: 2013 8th International Conference on Computer Science & Education, pp. 639–642. IEEE.

Kumar, P., Nagar, P., Arora, C., & Gupta, A. (2018). U-segnet: fully convolutional neural network based automated brain tissue segmentation tool. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3503–3507. IEEE.

Kwan, R. K. -S., Evans, A. C., & Pike, G. B. (1996). An extensible mri simulator for post-processing evaluation. In: International Conference on Visualization in Biomedical Computing, pp. 135–140. Springer.

Kwan, R.-S., Evans, A. C., & Pike, G. B. (1999). Mri simulation-based evaluation of image-processing and classification methods. IEEE transactions on medical imaging, 18(11), 1085–1097.

Article  CAS  PubMed  Google Scholar 

Liao, P.-S., Chen, T.-S., Chung, P.-C., et al. (2001). A fast algorithm for multilevel thresholding. J. Inf. Sci. Eng., 17(5), 713–727.

Google Scholar 

Li, C., Gore, J. C., & Davatzikos, C. (2014). Multiplicative intrinsic component optimization (mico) for mri bias field estimation and tissue segmentation. Magnetic resonance imaging, 32(7), 913–923.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, J., & Zhang, H. (2013). Image segmentation using a local gmm in a variational framework. Journal of mathematical imaging and vision, 46(2), 161–176.

Article  Google Scholar 

Mahata, N., & Sing, J. K. (2020). A novel fuzzy clustering algorithm by minimizing global and spatially constrained likelihood-based local entropies for noisy 3d brain mr image segmentation. Applied Soft Computing, 90, 106171.

Article  Google Scholar 

Maitra, M., et al. (2019). 3d unsupervised modified spatial fuzzy c-means method for segmentation of 3d brain mr image. Pattern Analysis and Applications, 22(4), 1561–1571.

Article  Google Scholar 

Miao, J., Zhou, X., & Huang, T.-Z. (2020). Local segmentation of images using an improved fuzzy c-means clustering algorithm based on self-adaptive dictionary learning. Applied Soft Computing, 91, 106200.

Article  Google Scholar 

Moeskops, P., Viergever, M. A., Mendrik, A. M., De Vries, L. S., Benders, M. J., & Išgum, I. (2016). Automatic segmentation of mr brain images with a convolutional neural network. IEEE transactions on medical imaging, 35(5), 1252–1261.

Article  PubMed  Google Scholar 

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62–66.

Article  Google Scholar 

Saladi, S., & Amutha Prabha, N. (2018). Mri brain segmentation in combination of clustering methods with markov random field. International Journal of Imaging Systems and Technology, 28(3), 207–216.

Article  Google Scholar 

Sikka, K., Sinha, N., Singh, P. K., & Mishra, A. K. (2009). A fully automated algorithm under modified fcm framework for improved brain mr image segmentation. Magnetic Resonance Imaging, 27(7), 994–1004.

Article  PubMed  Google Scholar 

Singh, C., & Bala, A. (2021). An unsupervised orthogonal rotation invariant moment based fuzzy c-means approach for the segmentation of brain magnetic resonance images. Expert Systems with Applications, 164, 113989.

Article  Google Scholar 

Solanki, R., & Kumar, D. (2023). Probabilistic intuitionistic fuzzy c-means algorithm with spatial constraint for human brain mri segmentation. Multimedia Tools and Applications, pp. 1–30.

Tavakoli-Zaniani, M., Sedighi-Maman, Z., & Zarandi, M. H. F. (2021). Segmentation of white matter, grey matter and cerebrospinal fluid from brain mr images using a modified fcm based on double estimation. Biomedical Signal Processing and Control, 68, 102615.

Article  Google Scholar 

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4), 600–612.

Article  PubMed  Google Scholar 

Yang, L., Tuzel, O., Meer, P., Foran, & D. J. (2008). Automatic image analysis of histopathology specimens using concave vertex graph. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 833–841. Springer.

Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm. IEEE transactions on medical imaging, 20(1), 45–57.

Article  CAS  PubMed  Google Scholar 

Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., & Shen, D. (2015). Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage, 108, 214–224.

Article  PubMed  Google Scholar 

Zhang, T., Xia, Y., & Feng, D. D. (2014). Hidden markov random field model based brain mr image segmentation using clonal selection algorithm and markov chain monte carlo method. Biomedical Signal Processing and Control, 12, 10–18.

Article  Google Scholar 

留言 (0)

沒有登入
gif